Hubble Deep Field - Multifrequency Followup

Multifrequency Followup

Very-high redshift objects (Lyman-break galaxies) cannot be seen in visible light and generally are detected in infrared or submillimetre wavelength surveys of the HDF instead. Observations with the Infrared Space Observatory (ISO) indicated infrared emission from 13 galaxies visible in the optical images, attributed to large quantities of dust associated with intense star formation. Infrared observations have also been made with the Spitzer Space Telescope. Submillimeter observations of the field have been made with SCUBA on the James Clerk Maxwell Telescope, initially detecting 5 sources, although with very low resolution. Observations have also been made with the Subaru telescope in Hawaii.

X-ray observations by the Chandra X-ray Observatory revealed six sources in the HDF, which were found to correspond to three elliptical galaxies: one spiral galaxy, one active galactic nucleus and one extremely red object, thought to be a distant galaxy containing a large amount of dust absorbing its blue light emissions.

Ground-based radio images taken using the VLA revealed seven radio sources in the HDF, all of which correspond to galaxies visible in the optical images. The field has also been surveyed with the Westerbork Synthesis Radio Telescope and the MERLIN array of radio telescopes at 1.4 GHz; the combination of VLA and MERLIN maps made at wavelengths of 3.5 and 20 cm have located 16 radio sources in the HDF-N field, with many more in the flanking fields. Radio images of some individual sources in the field have been made with the European VLBI Network at 1.6 GHz with a higher resolution than the Hubble maps.

Read more about this topic:  Hubble Deep Field