Representation Theory
Let A be a Hopf algebra, and let M and N be A-modules. Then, M ⊗ N is also an A-module, with
for m ∈ M, n ∈ N and . Furthermore, we can define the trivial representation as the base field K with
for m ∈ K. Finally, the dual representation of A can be defined: if M is an A-module and M* is its dual space, then
where f ∈ M* and m ∈ M.
The relationship between Δ, ε, and S ensure that certain natural homomorphisms of vector spaces are indeed homomorphisms of A-modules. For instance, the natural isomorphisms of vector spaces M → M ⊗ K and M → K ⊗ M are also isomorphisms of A-modules. Also, the map of vector spaces M* ⊗ M → K with f ⊗ m → f(m) is also a homomorphism of A-modules. However, the map M ⊗ M* → K is not necessarily a homomorphism of A-modules.
Read more about this topic: Hopf Algebras
Famous quotes containing the word theory:
“It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.”
—Jean Baudrillard (b. 1929)