Hopf Algebra - Formal Definition

Formal Definition

Formally, a Hopf algebra is a (associative and coassociative) bialgebra H over a field K together with a K-linear map S: HH (called the antipode) such that the following diagram commutes:

Here Δ is the comultiplication of the bialgebra, ∇ its multiplication, η its unit and ε its counit. In the sumless Sweedler notation, this property can also be expressed as

As for algebras, one can replace the underlying field K with a commutative ring R in the above definition.

The definition of Hopf algebra is self-dual (as reflected in the symmetry of the above diagram), so if one can define a dual of H (which is always possible if H is finite-dimensional), then it is automatically a Hopf algebra.

Read more about this topic:  Hopf Algebra

Famous quotes containing the words formal and/or definition:

    The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.
    David Elkind (20th century)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)