Hopf Algebra - Cohomology of Lie Groups

Cohomology of Lie Groups

The cohomology algebra of a Lie group is a Hopf algebra: the multiplication is provided by the cup-product, and the comultiplication

by the group multiplication G × GG. This observation was actually a source of the notion of Hopf algebra. Using this structure, Hopf proved a structure theorem for the cohomology algebra of Lie groups.

Theorem (Hopf) Let A be a finite-dimensional, graded commutative, graded cocommutative Hopf algebra over a field of characteristic 0. Then A (as an algebra) is a free exterior algebra with generators of odd degree.

Read more about this topic:  Hopf Algebra

Famous quotes containing the words lie and/or groups:

    It is often the case that the man who can’t tell a lie thinks he is the best judge of one.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    Instead of seeing society as a collection of clearly defined “interest groups,” society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.
    Diana Crane (b. 1933)