Homotopy Lifting Property

In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property (also known as the right lifting property or the covering homotopy axiom) is a technical condition on a continuous function from a topological space E to another one, B. It is designed to support the picture of E 'above' B, by allowing a homotopy taking place in B to be moved 'upstairs' to E. For example, a covering map has a property of unique local lifting of paths to a given sheet; the uniqueness is to do with the fact that the fibers of a covering map are discrete spaces. The homotopy lifting property will hold in many situations, such as the projection in a vector bundle, fiber bundle or fibration, where there need be no unique way of lifting.

Read more about Homotopy Lifting Property:  Formal Definition, Generalization: The Homotopy Lifting Extension Property

Famous quotes containing the words lifting and/or property:

    It was something like love
    From another world that seized her
    From behind, and she gave, not lifting her head
    Out of dew, without ever looking, her best
    Self to that great need.
    James Dickey (b. 1923)

    There is no such thing as “the Queen’s English.” The property has gone into the hands of a joint stock company and we own the bulk of the shares!
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)