Relative Homotopy Groups
There are also relative homotopy groups πn(X,A) for a pair (X,A), where A is a subspace of X. The elements of such a group are homotopy classes of based maps Dn → X which carry the boundary Sn−1 into A. Two maps f, g are called homotopic relative to A if they are homotopic by a basepoint-preserving homotopy F : Dn × → X such that, for each p in Sn−1 and t in, the element F(p,t) is in A. The ordinary homotopy groups are the special case in which A is the base point.
These groups are abelian for but for form the top group of a crossed module with bottom group π1(A).
There is a long exact sequence of relative homotopy groups.
Read more about this topic: Homotopy Group
Famous quotes containing the words relative and/or groups:
“And since the average lifetimethe relative longevityis far greater for memories of poetic sensations than for those of heartbreaks, since the very long time that the grief I felt then because of Gilbert, it has been outlived by the pleasure I feel, whenever I wish to read, as in a sort of sundial, the minutes between twelve fifteen and one oclock, in the month of May, upon remembering myself chatting ... with Madame Swann under the reflection of a cradle of wisteria.”
—Marcel Proust (18711922)
“As in political revolutions, so in paradigm choicethere is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.”
—Thomas S. Kuhn (b. 1922)