Methods of Calculation
Calculation of homotopy groups is in general much more difficult than some of the other homotopy invariants learned in algebraic topology. Unlike the Seifert–van Kampen theorem for the fundamental group and the Excision theorem for singular homology and cohomology, there is no simple way to calculate the homotopy groups of a space by breaking it up into smaller spaces. However methods developed in the 1980s involving a van Kampen type theorem for higher homotopy groupoids have allowed new calculations on homotopy types and so on homotopy groups. See for a sample result the 2008 paper by Ellis and Mikhailov listed below.
For some spaces, such as tori, all higher homotopy groups (that is, second and higher homotopy groups) are trivial. These are the so-called aspherical spaces. However, despite intense research in calculating the homotopy groups of spheres, even in two dimensions a complete list is not known. To calculate even the fourth homotopy group of S2 one needs much more advanced techniques than the definitions might suggest. In particular the Serre spectral sequence was constructed for just this purpose.
Certain Homotopy groups of n-connected spaces can be calculated by comparison with homology groups via the Hurewicz theorem.
Read more about this topic: Homotopy Group
Famous quotes containing the words methods of, methods and/or calculation:
“A woman might claim to retain some of the childs faculties, although very limited and defused, simply because she has not been encouraged to learn methods of thought and develop a disciplined mind. As long as education remains largely induction ignorance will retain these advantages over learning and it is time that women impudently put them to work.”
—Germaine Greer (b. 1939)
“The comparison between Coleridge and Johnson is obvious in so far as each held sway chiefly by the power of his tongue. The difference between their methods is so marked that it is tempting, but also unnecessary, to judge one to be inferior to the other. Johnson was robust, combative, and concrete; Coleridge was the opposite. The contrast was perhaps in his mind when he said of Johnson: his bow-wow manner must have had a good deal to do with the effect produced.”
—Virginia Woolf (18821941)
“To my thinking boomed the Professor, begging the question as usual, the greatest triumph of the human mind was the calculation of Neptune from the observed vagaries of the orbit of Uranus.
And yours, said the P.B.”
—Samuel Beckett (19061989)