Homology (mathematics) - Properties

Properties

If (dn: AnAn-1) is a chain complex such that all but finitely many An are zero, and the others are finitely generated abelian groups (or finite dimensional vector spaces), then we can define the Euler characteristic

(using the rank in the case of abelian groups and the Hamel dimension in the case of vector spaces). It turns out that the Euler characteristic can also be computed on the level of homology:

and, especially in algebraic topology, this provides two ways to compute the important invariant χ for the object X which gave rise to the chain complex.

Every short exact sequence

of chain complexes gives rise to a long exact sequence of homology groups

All maps in this long exact sequence are induced by the maps between the chain complexes, except for the maps Hn(C)Hn-1(A) The latter are called connecting homomorphisms and are provided by the snake lemma. The snake lemma can be applied to homology in numerous ways that aid in calculating homology groups, such as the theories of relative homology and Mayer-Vietoris sequences.

Read more about this topic:  Homology (mathematics)

Famous quotes containing the word properties:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)