Algebraic Forms in General
Algebraic form, or simply form, is another term for homogeneous polynomial. These then generalise from quadratic forms to degrees 3 and more, and have in the past also been known as quantics (a term that originated with Cayley). To specify a type of form, one has to give the degree d and the number of variables n. A form is over some given field K, if it maps from Kn to K, where n is the number of variables of the form.
A form f over some field K in n variables represents 0 if there exists an element
- (x1,...,xn)
in Kn such that f(x1,...,xn) =0 and at least one of the xi is not equal to zero.
A quadratic form over the field of the real numbers represents 0 if and only if it is not definite.
Read more about this topic: Homogeneous Polynomials
Famous quotes containing the words algebraic, forms and/or general:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“Painting dissolves the forms at its command, or tends to; it melts them into color. Drawing, on the other hand, goes about resolving forms, giving edge and essence to things. To see shapes clearly, one outlines themwhether on paper or in the mind. Therefore, Michelangelo, a profoundly cultivated man, called drawing the basis of all knowledge whatsoever.”
—Alexander Eliot (b. 1919)
“Private property is held sacred in all good governments, and particularly in our own. Yet shall the fear of invading it prevent a general from marching his army over a cornfield or burning a house which protects the enemy? A thousand other instances might be cited to show that laws must sometimes be silent when necessity speaks.”
—Andrew Jackson (17671845)