Algebraic Forms in General
Algebraic form, or simply form, is another term for homogeneous polynomial. These then generalise from quadratic forms to degrees 3 and more, and have in the past also been known as quantics (a term that originated with Cayley). To specify a type of form, one has to give the degree d and the number of variables n. A form is over some given field K, if it maps from Kn to K, where n is the number of variables of the form.
A form f over some field K in n variables represents 0 if there exists an element
- (x1,...,xn)
in Kn such that f(x1,...,xn) =0 and at least one of the xi is not equal to zero.
A quadratic form over the field of the real numbers represents 0 if and only if it is not definite.
Read more about this topic: Homogeneous Polynomials
Famous quotes containing the words algebraic, forms and/or general:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“... it seems to have been my luck to stumble into various forms of progress, to which I have been of the smallest possible use; yet for whose sake I have suffered the discomfort attending all action in moral improvements, without the happiness of knowing that this was clearly quite worth while.”
—Elizabeth Stuart Phelps (18441911)
“Without metaphor the handling of general concepts such as culture and civilization becomes impossible, and that of disease and disorder is the obvious one for the case in point. Is not crisis itself a concept we owe to Hippocrates? In the social and cultural domain no metaphor is more apt than the pathological one.”
—Johan Huizinga (18721945)