Yoneda's Lemma
Referring to the above commutative diagram, one observes that every morphism
- h : A′ → A
gives rise to a natural transformation
- Hom(h,–) : Hom(A,–) → Hom(A′,–)
and every morphism
- f : B → B′
gives rise to a natural transformation
- Hom(–,f) : Hom(–,B) → Hom(–,B′)
Yoneda's lemma implies that every natural transformation between Hom functors is of this form. In other words, the Hom functors give rise to a full and faithful embedding of the category C into the functor category SetC (covariant or contravariant depending on which Hom functor is used).
Read more about this topic: Hom Functor
Related Phrases
Related Words