Hilbert's Problems - Nature and Influence of The Problems

Nature and Influence of The Problems

Hilbert's problems ranged greatly in topic and precision. Some of them are propounded precisely enough to enable a clear affirmative/negative answer, like the 3rd problem (probably the easiest for a nonspecialist to understand and also the first to be solved) or the notorious 8th problem (the Riemann hypothesis). There are other problems (notably the 5th) for which experts have traditionally agreed on a single interpretation and a solution to the accepted interpretation has been given, but for which there remain unsolved problems which are so closely related as to be, perhaps, part of what Hilbert intended. Sometimes Hilbert's statements were not precise enough to specify a particular problem but were suggestive enough so that certain problems of more contemporary origin seem to apply, e.g. most modern number theorists would probably see the 9th problem as referring to the (conjectural) Langlands correspondence on representations of the absolute Galois group of a number field. Still other problems (e.g. the 11th and the 16th) concern what are now flourishing mathematical subdisciplines, like the theories of quadratic forms and real algebraic curves.

There are two problems which are not only unresolved but may in fact be unresolvable by modern standards. The 6th problem concerns the axiomatization of physics, a goal that twentieth century developments of physics (including its recognition as a discipline independent from mathematics) seem to render both more remote and less important than in Hilbert's time. Also, the 4th problem concerns the foundations of geometry, in a manner which is now generally judged to be too vague to enable a definitive answer.

Remarkably, the other twenty-one problems have all received significant attention, and late into the twentieth century work on these problems was still considered to be of the greatest importance. Notably, Paul Cohen received the Fields Medal during 1966 for his work on the first problem, and the negative solution of the tenth problem during 1970 by Matiyasevich (completing work of Davis, Putnam and Robinson) generated similar acclaim. Aspects of these problems are still of great interest today.

Read more about this topic:  Hilbert's Problems

Famous quotes containing the words nature and, nature, influence and/or problems:

    We know only a single science, the science of history. One can look at history from two sides and divide it into the history of nature and the history of men. However, the two sides are not to be divided off; as long as men exist the history of nature and the history of men are mutually conditioned.
    Karl Marx (1818–1883)

    ... if a person is to be unconventional, he must be amusing or he is intolerable: for, in the nature of the case, he guarantees you nothing but amusement. He does not guarantee you any of the little amenities by which society has assured itself that, if it must go to sleep, it will at least sleep in a comfortable chair.
    Katharine Fullerton Gerould (1879–1944)

    The Family is the Country of the heart. There is an angel in the Family who, by the mysterious influence of grace, of sweetness, and of love, renders the fulfilment of duties less wearisome, sorrows less bitter. The only pure joys unmixed with sadness which it is given to man to taste upon earth are, thanks to this angel, the joys of the Family.
    Giuseppe Mazzini (1805–1872)

    I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.
    Thomas Henry Huxley (1825–95)