Hilbert's Problems - Nature and Influence of The Problems

Nature and Influence of The Problems

Hilbert's problems ranged greatly in topic and precision. Some of them are propounded precisely enough to enable a clear affirmative/negative answer, like the 3rd problem (probably the easiest for a nonspecialist to understand and also the first to be solved) or the notorious 8th problem (the Riemann hypothesis). There are other problems (notably the 5th) for which experts have traditionally agreed on a single interpretation and a solution to the accepted interpretation has been given, but for which there remain unsolved problems which are so closely related as to be, perhaps, part of what Hilbert intended. Sometimes Hilbert's statements were not precise enough to specify a particular problem but were suggestive enough so that certain problems of more contemporary origin seem to apply, e.g. most modern number theorists would probably see the 9th problem as referring to the (conjectural) Langlands correspondence on representations of the absolute Galois group of a number field. Still other problems (e.g. the 11th and the 16th) concern what are now flourishing mathematical subdisciplines, like the theories of quadratic forms and real algebraic curves.

There are two problems which are not only unresolved but may in fact be unresolvable by modern standards. The 6th problem concerns the axiomatization of physics, a goal that twentieth century developments of physics (including its recognition as a discipline independent from mathematics) seem to render both more remote and less important than in Hilbert's time. Also, the 4th problem concerns the foundations of geometry, in a manner which is now generally judged to be too vague to enable a definitive answer.

Remarkably, the other twenty-one problems have all received significant attention, and late into the twentieth century work on these problems was still considered to be of the greatest importance. Notably, Paul Cohen received the Fields Medal during 1966 for his work on the first problem, and the negative solution of the tenth problem during 1970 by Matiyasevich (completing work of Davis, Putnam and Robinson) generated similar acclaim. Aspects of these problems are still of great interest today.

Read more about this topic:  Hilbert's Problems

Famous quotes containing the words nature, influence and/or problems:

    From cradle to grave this problem of running order through chaos, direction through space, discipline through freedom, unity through multiplicity, has always been, and must always be, the task of education, as it is the moral of religion, philosophy, science, art, politics and economy; but a boy’s will is his life, and he dies when it is broken, as the colt dies in harness, taking a new nature in becoming tame.
    Henry Brooks Adams (1838–1918)

    If the contemplation, even of inanimate beauty, is so delightful; if it ravishes the senses, even when the fair form is foreign to us: What must be the effects of moral beauty? And what influence must it have, when it embellishes our own mind, and is the result of our own reflection and industry?
    David Hume (1711–1776)

    I respect guilt. It is a dangerous but sometimes useful beast. The guilt that made me want to solve all my children’s problems meant trouble. The guilt that made me question my role in our mother-daughter squabbles proved helpful. Yes, I care about my kids’ problems, and I long to make suggestions. But these days I wait for children to ask for help, and I give it sparingly. Some things can’t be fixed, and I tell them so.
    Susan Ferraro (20th century)