Proof and Generalization
There are many known proofs of the theorem. One proof is the following:
- Note that it is enough to prove Zariski's lemma: a finitely generated algebra over a field k that is a field is a finite field extension of k.
- Prove Zariski's lemma.
The proof of Step 1 is elementary. Step 2 is deeper. It follows, for example, from the Noether normalization lemma. See Zariski's lemma for more. Here we sketch the proof of Step 1. Let (k algebraically closed field), I an ideal of A and V the common zeros of I in . Clearly, . Let . Then for some prime ideal in A. Let and its maximal ideal. By Zariski's lemma, is a finite extension of k; thus, is k since k is algebraically closed. Let be the images of under the natural map . It follows that and .
The Nullstellensatz will also follow trivially once one systematically developed the theory of a Jacobson ring, a ring in which a radical ideal is an intersection of maximal ideals. This idea is due to Bourbaki. Let be a Jacobson ring. If is a finitely generated R-algebra, then is a Jacobson ring. Further, if is a maximal ideal, then is a maximal ideal of R, and is a finite extension field of .
Another generalization states that a faithfully flat morphism locally of finite type with X quasi-compact has a quasi-section, i.e. there exists affine and faithfully flat and quasi-finite over X together with an X-morphism
Read more about this topic: Hilbert's Nullstellensatz
Famous quotes containing the word proof:
“If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nations greatest strength, will tell their own story to the world.”
—Susan B. Anthony (18201906)