In linear algebra, a Hilbert matrix, introduced by Hilbert (1894), is a square matrix with entries being the unit fractions
For example, this is the 5 × 5 Hilbert matrix:
The Hilbert matrix can be regarded as derived from the integral
that is, as a Gramian matrix for powers of x. It arises in the least squares approximation of arbitrary functions by polynomials.
The Hilbert matrices are canonical examples of ill-conditioned matrices, making them notoriously difficult to use in numerical computation. For example, the 2-norm condition number of the matrix above is about 4.8 · 105.
Read more about Hilbert Matrix: Historical Note, Properties
Famous quotes containing the word matrix:
“As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.”
—Margaret Atwood (b. 1939)