The Hilbert Cube As A Metric Space
It's sometimes convenient to think of the Hilbert cube as a metric space, indeed as a specific subset of a separable Hilbert space (i.e. a Hilbert space with a countably infinite Hilbert basis). For these purposes, it is best not to think of it as a product of copies of, but instead as
- × × × ···;
as stated above, for topological properties, this makes no difference. That is, an element of the Hilbert cube is an infinite sequence
- (xn)
that satisfies
- 0 ≤ xn ≤ 1/n.
Any such sequence belongs to the Hilbert space ℓ2, so the Hilbert cube inherits a metric from there. One can show that the topology induced by the metric is the same as the product topology in the above definition.
Read more about this topic: Hilbert Cube
Famous quotes containing the word space:
“In the tale properwhere there is no space for development of character or for great profusion and variety of incidentmere construction is, of course, far more imperatively demanded than in the novel.”
—Edgar Allan Poe (18091849)