Definition
The Hilbert cube is best defined as the topological product of the intervals for n = 1, 2, 3, 4, ... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence .
The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval . In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension.
If a point in the Hilbert cube is specified by a sequence with, then a homeomorphism to the infinite dimensional unit cube is given by .
Read more about this topic: Hilbert Cube
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)