Hilbert Cube - Definition

Definition

The Hilbert cube is best defined as the topological product of the intervals for n = 1, 2, 3, 4, ... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence .

The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval . In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension.

If a point in the Hilbert cube is specified by a sequence with, then a homeomorphism to the infinite dimensional unit cube is given by .

Read more about this topic:  Hilbert Cube

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)