Definition
The Hilbert cube is best defined as the topological product of the intervals for n = 1, 2, 3, 4, ... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence .
The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval . In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension.
If a point in the Hilbert cube is specified by a sequence with, then a homeomorphism to the infinite dimensional unit cube is given by .
Read more about this topic: Hilbert Cube
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)