Highly Totient Number

A highly totient number k is an integer that has more solutions to the equation φ(x) = k, where φ is Euler's totient function, than any integer below it. The first few highly totient numbers are

1, 2, 4, 8, 12, 24, 48, 72, 144, 240, 432, 480, 576, 720, 1152, 1440 (sequence A097942 in OEIS).

with 1, 3, 4, 5, 6, 10, 11, 17, 21, 31, 34, 37, 38, 49, 54, and 72 totient solutions respectively. The sequence of highly totient numbers is a subset of the sequence of smallest number k with exactly n solutions to φ(x) = k.

These numbers have more ways of being expressed as products of numbers of the form p - 1 and their products than smaller integers.

The concept is somewhat analogous to that of highly composite numbers, and in the same way that 1 is the only odd highly composite number, it is also the only odd highly totient number (indeed, the only odd number to not be a nontotient). And just as there are infinitely many highly composite numbers, there are also infinitely many highly totient numbers, though the highly totient numbers get tougher to find the higher one goes, since calculating the totient function involves factorization into primes, something that becomes extremely difficult as the numbers get larger.

Famous quotes containing the words highly and/or number:

    The bourgeois treasures nothing more highly than the self.... And so at the cost of intensity he achieves his own preservation and security. His harvest is a quiet mind which he prefers to being possessed by God, as he prefers comfort to pleasure, convenience to liberty, and a pleasant temperature to that deathly inner consuming fire.
    Hermann Hesse (1877–1962)

    My tendency to nervousness in my younger days, in view of the fact of a number of near relatives on both my father’s and mother’s side of the house having become insane, gave some serious uneasiness. I made up my mind to overcome it.... In the cross-examination of witnesses before a crowded court-house ... I soon found I could control myself even in the worst of testing cases. Finally, in battle.
    Rutherford Birchard Hayes (1822–1893)