In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above one and has more solutions to the equation
- x − φ(x) = k,
than any other integer below k and above one. Here, φ is Euler's totient function. There are infinitely many solutions to the equation for k = 1 so this value is excluded in the definition. The first few highly cototient numbers are:
- 2, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 119, 167, 209, 269, 299, 329, 389, 419, 509, 629, 659, 779, 839, 1049, 1169, 1259, 1469, 1649, 1679, 1889 (sequence A100827 in OEIS).
There are many odd highly cototient numbers. In fact, after 8, all the numbers listed above are odd, and after 167 all the numbers listed above are congruent to 9 modulo 10.
The concept is somewhat analogous to that of highly composite numbers. Just as there are infinitely many highly composite numbers, there are also infinitely many highly cototient numbers. Computations become harder, since integer factorization does, as the numbers get larger.
Read more about Highly Cototient Number: Primes
Famous quotes containing the words highly and/or number:
“I fear animals regard man as a creature of their own kind which has in a highly dangerous fashion lost its healthy animal reasonas the mad animal, as the laughing animal, as the weeping animal, as the unhappy animal.”
—Friedrich Nietzsche (18441900)
“Strange goings on! Jones did it slowly, deliberately, in the bathroom, with a knife, at midnight. What he did was butter a piece of toast. We are too familiar with the language of action to notice at first an anomaly: the it of Jones did it slowly, deliberately,... seems to refer to some entity, presumably an action, that is then characterized in a number of ways.”
—Donald Davidson (b. 1917)