Classifications
- Weathering steels: steels which have better corrosion resistance. A common example is COR-TEN.
- Control-rolled steels: hot rolled steels which have a highly deformed austenite structure that will transform to a very fine equiaxed ferrite structure upon cooling.
- Pearlite-reduced steels: low carbon content steels which lead to little or no pearlite, but rather a very fine grain ferrite matrix. It is strengthened by precipitation hardening.
- Acicular ferrite steels: These steels are characterized by a very fine high strength acicular ferrite structure, a very low carbon content, and good hardenability.
- Dual-phase steels: These steels have a ferrite microstruture that contain small, uniformly distributed sections of martensite. This microstructure gives the steels a low yield strength, high rate of work hardening, and good formability.
- Microalloyed steels: steels which contain very small additions of niobium, vanadium, and/or titanium to obtain a refined grain size and/or precipitation hardening.
A common type of micro-alloyed steel is improved-formability HSLA. It has a yield strength up to 80,000 psi (550 MPa) but only costs 24% more than A36 steel (36,000 psi (250 MPa)). One of the disadvantages of this steel is that it is 30 to 40% less ductile. In the U.S., these steels are dictated by the ASTM standards A1008/A1008M and A1011/A1011M for sheet metal and A656/A656M for plates. These steels were developed for the automotive industry to reduce weight without losing strength. Examples of uses include door-intrusion beams, chassis members, reinforcing and mounting brackets, steering and suspension parts, bumpers, and wheels.
Read more about this topic: High-strength Low-alloy Steel
Related Phrases
Related Words