Overview
Standard model of particle physics |
---|
Large Hadron Collider tunnel at CERN |
Background
Particle physics Standard Model Quantum field theory Gauge theory Spontaneous symmetry breaking Higgs mechanism |
Constituents
Electroweak interaction Quantum chromodynamics CKM matrix |
Limitations
Strong CP problem Hierarchy problem Neutrino oscillations See also: Physics beyond the Standard Model |
Scientists Rutherford · Thomson · Chadwick · Bose · Sudarshan · Koshiba · Davis, Jr. · Anderson · Fermi · Dirac · Feynman · Rubbia · Gell-Mann · Kendall · Taylor · Friedman · Powell · P. W. Anderson · Glashow · Meer · Cowan · Nambu · Chamberlain · Cabibbo · Schwartz · Perl · Majorana · Weinberg · Lee · Ward · Salam · Kobayashi · Maskawa · Yang · Yukawa · 't Hooft · Veltman · Gross · Politzer · Wilczek · Cronin · Fitch · Vleck · Higgs · Englert · Brout · Hagen · Guralnik · Kibble · Ting · Richter |
In particle physics, elementary particles and forces give rise to the world around us. Nowadays, physicists explain the behaviour of these particles and how they interact using the Standard Model—a widely accepted and "remarkably" accurate framework based on gauge invariance and symmetries, believed to explain almost everything in the world we see, other than gravity.
But by around 1960 all attempts to create a gauge invariant theory for two of the four fundamental forces had consistently failed at one crucial point: although gauge invariance seemed extremely important, including it seemed to make any theory of electromagnetism and the weak force go haywire, by demanding that either many particles with mass were massless or that non-existent forces and massless particles had to exist. Scientists had no idea how to get past this point.
Work done on superconductivity and "broken" symmetries around 1960 led physicist Philip Anderson to suggest in 1962 a new kind of solution that might hold the key. In 1964 a theory was created by 3 different groups of researchers, that showed the problems could be resolved if an unusual kind of field existed throughout the universe. It would cause existing particles to acquire mass instead of new massless particles being formed. By 1972 it had been developed into a comprehensive theory and proved capable of giving "sensible" results. Although there was not yet any proof of such a field, calculations consistently gave answers and predictions that were confirmed by experiments, including very accurate predictions of several other particles, so scientists began to believe this might be true and to search for proof whether or not a Higgs field exists in nature.
If this field did exist, this would be a monumental discovery for science and human knowledge, and is expected to open doorways to new knowledge in many fields. If not, then other more complicated theories would need to be explored. The easiest proof whether or not the field existed was by searching for a new kind of particle it would have to give off, known as "Higgs bosons" or the "Higgs particle" (after Peter Higgs who first predicted them in 1964). These would be extremely difficult to find, so it was only many years later that experimental technology became sophisticated enough to answer the question.
While several symmetries in nature are spontaneously broken through a form of the Higgs mechanism, in the context of the Standard Model the term "Higgs mechanism" almost always means symmetry breaking of the electroweak field. It is considered proven, but the exact cause has been exceedingly difficult to prove. After 50 years, the Higgs boson's existence – apparently proven in 2013 – would finally confirm that the Standard Model is essentially correct and allow further development, while its non-existence would mean that other theories are needed instead.
Read more about this topic: Higgs Boson