Definition
There are two different ways of standardizing the Hermite polynomials:
(the "probabilists' Hermite polynomials"), and
(the "physicists' Hermite polynomials"). These two definitions are not exactly equivalent; either is a rescaling of the other, to wit
These are Hermite polynomial sequences of different variances; see the material on variances below.
The notation He and H is that used in the standard references Tom H. Koornwinder, Roderick S. C. Wong, and Roelof Koekoek et al. (2010) and Abramowitz & Stegun. The polynomials Hen are sometimes denoted by Hn, especially in probability theory, because
is the probability density function for the normal distribution with expected value 0 and standard deviation 1.
The first eleven probabilists' Hermite polynomials are:
and the first eleven physicists' Hermite polynomials are:
Read more about this topic: Hermite Polynomials
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)