Publications in Number Theory
An overview of Smith's mathematics contained in a lengthy obituary published in a professional journal in 1884 is reproduced at NumberTheory.Org . The following is an extract from it.
His two earliest mathematical papers were on geometrical subjects, but the third concerned the theory of numbers. Following the example of Gauss, he wrote his first paper on the theory of numbers in Latin: "De compositione numerorum primorum formæ ex duobus quadratis." In it he proves in an original manner the theorem of Fermat---"That every prime number of the form ( being an integer) is the sum of two square numbers." In his second paper he gives an introduction to the theory of numbers.
In 1858 he was selected by the British Association to prepare a report upon the Theory of Numbers. It was prepared in five parts, extending over the years 1859-1865. It is neither a history nor a treatise, but something intermediate. The author analyzes with remarkable clearness and order the works of mathematicians for the preceding century upon the theory of congruences, and upon that of binary quadratic forms. He returns to the original sources, indicates the principle and sketches the course of the demonstrations, and states the result, often adding something of his own.
During the preparation of the Report, and as a logical consequence of the researches connected therewith, Smith published several original contributions to the higher arithmetic. Some were in complete form and appeared in the Philosophical Transactions of the Royal Society of London; others were incomplete, giving only the results without the extended demonstrations, and appeared in the Proceedings of that Society. One of the latter, entitled "On the orders and genera of quadratic forms containing more than three indeterminates," enunciates certain general principles by means of which he solves a problem proposed by Eisenstein, namely, the decomposition of integer numbers into the sum of five squares; and further, the analogous problem for seven squares. It was also indicated that the four, six, and eight-square theorems of Jacobi, Eisenstein and Lionville were deducible from the principles set forth.
In 1868 he returned to the geometrical researches which had first occupied his attention. For a memoir on "Certain cubic and biquadratic problems" the Royal Academy of Sciences of Berlin awarded him the Steiner prize.
In February, 1882, he was surprised to see in the Comptes rendus that the subject proposed by the Paris Academy of Science for the Grand prix des sciences mathématiques was the theory of the decomposition of integer numbers into a sum of five squares; and that the attention of competitors was directed to the results announced without demonstration by Eisenstein, whereas nothing was said about his papers dealing with the same subject in the Proceedings of the Royal Society. He wrote to M. Hermite calling his attention to what he had published; in reply he was assured that the members of the commission did not know of the existence of his papers, and he was advised to complete his demonstrations and submit the memoir according to the rules of the competition. According to the rules each manuscript bears a motto, and the corresponding envelope containing the name of the successful author is opened. There were still three months before the closing of the concours (1 June 1882) and Smith set to work, prepared the memoir and despatched it in time.
Two months after his death the Paris Academy made their award. Two of the three memoirs sent in were judged worthy of the prize. When the envelopes were opened, the authors were found to be Smith and Minkowski, a young mathematician of Koenigsberg, Prussia. No notice was taken of Smith's previous publication on the subject, and M. Hermite on being written to, said that he forgot to bring the matter to the notice of the commission.
Read more about this topic: Henry John Stephen Smith
Famous quotes containing the words publications, number and/or theory:
“Dr. Calder [a Unitarian minister] said of Dr. [Samuel] Johnson on the publications of Boswell and Mrs. Piozzi, that he was like Actaeon, torn to pieces by his own pack.”
—Horace Walpole (17171797)
“The poetic act consists of suddenly seeing that an idea splits up into a number of equal motifs and of grouping them; they rhyme.”
—Stéphane Mallarmé (18421898)
“In the theory of gender I began from zero. There is no masculine power or privilege I did not covet. But slowly, step by step, decade by decade, I was forced to acknowledge that even a woman of abnormal will cannot escape her hormonal identity.”
—Camille Paglia (b. 1947)