Henri Lebesgue - Mathematical Career

Mathematical Career

Lebesgue's first paper was published in 1898 and was titled "Sur l'approximation des fonctions". It dealt with Weierstrass' theorem on approximation to continuous functions by polynomials. Between March 1899 and April 1901 Lebesgue published six notes in Comptes Rendus. The first of these, unrelated to his development of Lebesgue integration, dealt with the extension of Baire's theorem to functions of two variables. The next five dealt with surfaces applicable to a plane, the area of skew polygons, surface integrals of minimum area with a given bound, and the final note gave the definition of Lebesgue integration for some function f(x). Lebesgue's great thesis, Intégrale, longueur, aire, with the full account of this work, appeared in the Annali di Matematica in 1902. The first chapter develops the theory of measure (see Borel measure). In the second chapter he defines the integral both geometrically and analytically. The next chapters expand the Comptes Rendus notes dealing with length, area and applicable surfaces. The final chapter deals mainly with Plateau's problem. This dissertation is considered to be one of the finest ever written by a mathematician.

His lectures from 1902 to 1903 were collected into a "Borel tract" Leçons sur l'intégration et la recherche des fonctions primitives. The problem of integration regarded as the search for a primitive function is the keynote of the book. Lebesgue presents the problem of integration in its historical context, addressing Cauchy, Dirichlet, and Riemann. Lebesgue presents six conditions which it is desirable that the integral should satisfy, the last of which is "If the sequence fn(x) increases to the limit f(x), the integral of fn(x) tends to the integral of f(x)." Lebesgue shows that his conditions lead to the theory of measure and measurable functions and the analytical and geometrical definitions of the integral.

He turned next to trigonometric functions with his 1903 paper "Sur les séries trigonométriques". He presented three major theorems in this work: that a trigonometrical series representing a bounded function is a Fourier series, that the nth Fourier coefficient tends to zero (the Riemann–Lebesgue lemma), and that a Fourier series is integrable term by term. In 1904-1905 Lebesgue lectured once again at the Collège de France, this time on trigonometrical series and he went on to publish his lectures in another of the "Borel tracts". In this tract he once again treats the subject in its historical context. He expounds on Fourier series, Cantor-Riemann theory, the Poisson integral and the Dirichlet problem.

In a 1910 paper, "Représentation trigonométrique approchée des fonctions satisfaisant a une condition de Lipschitz" deals with the Fourier series of functions satisfying a Lipschitz condition, with an evaluation of the order of magnitude of the remainder term. He also proves that the Riemann–Lebesgue lemma is a best possible result for continuous functions, and gives some treatment to Lebesgue constants.

Lebesgue once wrote, "Réduites à des théories générales, les mathématiques seraient une belle forme sans contenu." ("Reduced to general theories, mathematics would be a beautiful form without content.")

In measure-theoretic analysis and related branches of mathematics, the Lebesgue–Stieltjes integral generalizes Riemann–Stieltjes and Lebesgue integration, preserving the many advantages of the latter in a more general measure-theoretic framework.

During the course of his career, Lebesgue also made forays into the realms of complex analysis and topology. He also had a disagreement with Borel (called teilweise heftig) with regards to effective calculation. However, these minor forays pale in comparison to his contributions to real analysis; his contributions to this field had a tremendous impact on the shape of the field today and his methods have become an essential part of modern analysis. Additionally, he is claimed to be the last of the mathematicians to consider one to be a prime number.

Read more about this topic:  Henri Lebesgue

Famous quotes containing the words mathematical and/or career:

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)

    It is a great many years since at the outset of my career I had to think seriously what life had to offer that was worth having. I came to the conclusion that the chief good for me was freedom to learn, think, and say what I pleased, when I pleased. I have acted on that conviction... and though strongly, and perhaps wisely, warned that I should probably come to grief, I am entirely satisfied with the results of the line of action I have adopted.
    Thomas Henry Huxley (1825–95)