Heisenberg Group - Higher Dimensions

Higher Dimensions

More general Heisenberg groups Hn may be defined for higher dimensions in Euclidean space, and more generally on symplectic vector spaces. The simplest general case is the real Heisenberg group of dimension 2n+1, for any integer n ≥ 1. As a group of matrices, Hn (or Hn(R) to indicate this is the Heisenberg group over the ring R or real numbers) is defined as the group of square matrices of size n+2 with entries in R:

where

a is a row vector of length n,
b is a column vector of length n,
is the identity matrix of size n.

Read more about this topic:  Heisenberg Group

Famous quotes containing the words higher and/or dimensions:

    I do not think I could myself, be brought to support a man for office, whom I knew to be an open enemy of, and scoffer at, religion. Leaving the higher matter of eternal consequences, between him and his Maker, I still do not think any man has the right thus to insult the feelings, and injure the morals, of the community in which he may live.
    Abraham Lincoln (1809–1865)

    Is it true or false that Belfast is north of London? That the galaxy is the shape of a fried egg? That Beethoven was a drunkard? That Wellington won the battle of Waterloo? There are various degrees and dimensions of success in making statements: the statements fit the facts always more or less loosely, in different ways on different occasions for different intents and purposes.
    —J.L. (John Langshaw)