Geometric and Topological Properties
The Heawood graph is a toroidal graph; that is, it can be embedded without crossings onto a torus. One embedding of this type places its vertices and edges into three-dimensional Euclidean space as the set of vertices and edges of a nonconvex polyhedron with the topology of a torus, the Szilassi polyhedron.
The graph is named after Percy John Heawood, who in 1890 proved that in every subdivision of the torus into polygons, the polygonal regions can be colored by at most seven colors. The Heawood graph forms a subdivision of the torus with seven mutually adjacent regions, showing that this bound is tight.
The Heawood graph is also the Levi graph of the Fano plane, the graph representing incidences between points and lines in that geometry. With this interpretation, the 6-cycles in the Heawood graph correspond to triangles in the Fano plane.
The Heawood graph has crossing number 3, and is the smallest cubic graph with that crossing number (sequence A110507 in OEIS). Including the Heawood graph, there are 8 distinct graphs of order 14 with crossing number 3.
The Heawood graph is a unit distance graph: it can be embedded in the plane such that adjacent vertices are exactly at distance one apart, with no two vertices embedded to the same point and no vertex embedded into a point within an edge. However, the known embeddings of this type lack any of the symmetries that are inherent in the graph.
Read more about this topic: Heawood Graph
Famous quotes containing the words geometric and/or properties:
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)