Algebraic Properties
The automorphism group of the Heawood graph is isomorphic to the projective linear group PGL2(7), a group of order 336. It acts transitively on the vertices, on the edges and on the arcs of the graph. Therefore the Heawood graph is a symmetric graph. It has automorphisms that take any vertex to any other vertex and any edge to any other edge. According to the Foster census, the Heawood graph, referenced as F014A, is the only cubic symmetric graph on 14 vertices.
The characteristic polynomial of the Heawood graph is . It is the only graph with this characteristic polynomial, making it a graph determined by its spectrum.
Read more about this topic: Heawood Graph
Famous quotes containing the words algebraic and/or properties:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)