Physical Processes
Metallic materials consist of a microstructure of small crystals called "grains" or crystallites. The nature of the grains (i.e. grain size and composition) is one of the most effective factors that can determine the overall mechanical behavior of the metal. Heat treatment provides an efficient way to manipulate the properties of the metal by controlling the rate of diffusion and the rate of cooling within the microstructure. Heat treating is often used to alter the mechanical properties of an alloy, manipulating properties such as the hardness, strength, toughness, ductility, and elasticity.
There are two mechanisms that may change an alloy's properties during heat treatment. The martensite transformation causes the crystals to deform intrinsically. The diffusion mechanism causes changes in the homogeneity of the alloy.
The crystal structure consists of atoms that are grouped in a very specific arrangement, called a lattice. In most elements, this order will rearrange itself, depending on conditions like temperature and pressure. This rearrangement, called allotropy or polymorphism, may occur several times, at many different temperatures for a particular metal. In alloys, this rearrangement may cause an element that will not normally dissolve into the base metal to suddenly become soluble, while a reversal of the allotropy will make the elements either partially or completely insoluble.
When in the soluble state, the process of diffusion causes the atoms of the dissolved element to spread out, attempting to form a homogenous distribution within the crystals of the base metal. If the alloy is cooled to an insoluble state, the atoms of the dissolved constituents (solutes) may migrate out of the solution. This type of diffusion, called precipitation, leads to nucleation, where the migrating atoms group together at the grain-boundaries. This forms a microstructure generally consisting of two or more distinct phases. Steel that has been cooled slowly, for instance, forms a laminated structure composed of alternating layers of ferrite and cementite, becoming soft pearlite.
Unlike iron-based alloys, most heat treatable alloys do not experience a ferrite transformation. In these alloys, the nucleation at the grain-boundaries often reinforces the structure of the crystal matrix. These metals harden by precipitation. Typically a slow process, depending on temperature, this is often referred to as "age hardening".
Many metals and non-metals exhibit a martensite transformation when cooled quickly. When a metal is cooled very quickly, the insoluble atoms may not be able to migrate out of the solution in time. This is called a "diffusionless transformation." When the crystal matrix changes to its low temperature arrangement, the atoms of the solute become trapped within the lattice. The trapped atoms prevent the crystal matrix from completely changing into its low temperature allotrope, creating shearing stresses within the lattice. When some alloys are cooled quickly, such as steel, the martensite transformation hardens the metal, while in others, like aluminum, the alloy becomes softer.
Read more about this topic: Heat Treating
Famous quotes containing the words physical and/or processes:
“How many young hearts have revealed the fact that what they had been trained to imagine the highest earthly felicity was but the beginning of care, disappointment, and sorrow, and often led to the extremity of mental and physical suffering.”
—Catherine E. Beecher (18001878)
“The higher processes are all processes of simplification. The novelist must learn to write, and then he must unlearn it; just as the modern painter learns to draw, and then learns when utterly to disregard his accomplishment, when to subordinate it to a higher and truer effect.”
—Willa Cather (18731947)