Heat Transfer Coefficient - Overall Heat Transfer Coefficient

The overall heat transfer coefficient is a measure of the overall ability of a series of conductive and convective barriers to transfer heat. It is commonly applied to the calculation of heat transfer in heat exchangers, but can be applied equally well to other problems.

For the case of a heat exchanger, can be used to determine the total heat transfer between the two streams in the heat exchanger by the following relationship:

where

= heat transfer rate (W)
= overall heat transfer coefficient (W/(m²·K))
= heat transfer surface area (m2)
= log mean temperature difference (K)

The overall heat transfer coefficient takes into account the individual heat transfer coefficients of each stream and the resistance of the pipe material. It can be calculated as the reciprocal of the sum of a series of thermal resistances (but more complex relationships exist, for example when heat transfer takes place by different routes in parallel):

where

R = Resistance(s) to heat flow in pipe wall (K/W)
Other parameters are as above.

The heat transfer coefficient is the heat transferred per unit area per kelvin. Thus area is included in the equation as it represents the area over which the transfer of heat takes place. The areas for each flow will be different as they represent the contact area for each fluid side.

The thermal resistance due to the pipe wall is calculated by the following relationship:

where

x = the wall thickness (m)
k = the thermal conductivity of the material (W/(m·K))
A = the total area of the heat exchanger (m2)

This represents the heat transfer by conduction in the pipe.

The thermal conductivity is a characteristic of the particular material. Values of thermal conductivities for various materials are listed in the list of thermal conductivities.

As mentioned earlier in the article the convection heat transfer coefficient for each stream depends on the type of fluid, flow properties and temperature properties.

Some typical heat transfer coefficients include:

  • Air - h = 10 to 100 W/(m2K)
  • Water - h = 500 to 10,000 W/(m2K)

Read more about this topic:  Heat Transfer Coefficient

Famous quotes containing the words heat and/or transfer:

    Nowadays men cannot love seven night but they must have all their desires: that love may not endure by reason; for where they be soon accorded and hasty, heat soon it cooleth. Right so fareth love nowadays, soon hot soon cold: this is no stability. But the old love was not so.
    Thomas Malory (c. 1430–1471)

    No sociologist ... should think himself too good, even in his old age, to make tens of thousands of quite trivial computations in his head and perhaps for months at a time. One cannot with impunity try to transfer this task entirely to mechanical assistants if one wishes to figure something, even though the final result is often small indeed.
    Max Weber (1864–1920)