Table of Specific Heat Capacities
See also: List of thermal conductivitiesNote that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong-Petit limit of 25 J/(mol·K) = 3 R per mole of atoms (see the last column of this table). Paraffin, for example, has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
In the last column, major departures of solids at standard temperatures from the Dulong-Petit law value of 3R, are usually due to low atomic weight plus high bond strength (as in diamond) causing some vibration modes to have too much energy to be available to store thermal energy at the measured temperature. For gases, departure from 3R per mole of atoms in this table is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to other atoms, as happens in many solids.
Substance | Phase | (mass) specific heat capacity cp or cm J·g−1·K−1 |
Constant pressure molar heat capacity Cp,m J·mol−1·K−1 |
Constant volume molar heat capacity Cv,m J·mol−1·K−1 |
Volumetric heat capacity Cv J·cm−3·K−1 |
Constant vol. atom-molar heat capacity in units of R Cv,m(atom) atom-mol−1 |
---|---|---|---|---|---|---|
Air (Sea level, dry, 0 °C (273.15 K)) |
gas | 1.0035 | 29.07 | 20.7643 | 0.001297 | ~ 1.25 R |
Air (typical room conditionsA) |
gas | 1.012 | 29.19 | 20.85 | 0.00121 | ~ 1.25 R |
Aluminium | solid | 0.897 | 24.2 | 2.422 | 2.91 R | |
Ammonia | liquid | 4.700 | 80.08 | 3.263 | 3.21 R | |
Animal tissue (incl. human) |
mixed | 3.5 | 3.7* | |||
Antimony | solid | 0.207 | 25.2 | 1.386 | 3.03 R | |
Argon | gas | 0.5203 | 20.7862 | 12.4717 | 1.50 R | |
Arsenic | solid | 0.328 | 24.6 | 1.878 | 2.96 R | |
Beryllium | solid | 1.82 | 16.4 | 3.367 | 1.97 R | |
Bismuth | solid | 0.123 | 25.7 | 1.20 | 3.09 R | |
Cadmium | solid | 0.231 | 26.02 | 3.13 R | ||
Carbon dioxide CO2 | gas | 0.839* | 36.94 | 28.46 | 1.14 R | |
Chromium | solid | 0.449 | 23.35 | 2.81 R | ||
Copper | solid | 0.385 | 24.47 | 3.45 | 2.94 R | |
Diamond | solid | 0.5091 | 6.115 | 1.782 | 0.74 R | |
Ethanol | liquid | 2.44 | 112 | 1.925 | 1.50 R | |
Gasoline (octane) | liquid | 2.22 | 228 | 1.64 | 1.05 R | |
Glass | solid | 0.84 | ||||
Gold | solid | 0.129 | 25.42 | 2.492 | 3.05 R | |
Granite | solid | 0.790 | 2.17 | |||
Graphite | solid | 0.710 | 8.53 | 1.534 | 1.03 R | |
Helium | gas | 5.1932 | 20.7862 | 12.4717 | 1.50 R | |
Hydrogen | gas | 14.30 | 28.82 | 1.23 R | ||
Hydrogen sulfide H2S | gas | 1.015* | 34.60 | 1.05 R | ||
Iron | solid | 0.450 | 25.1 | 3.537 | 3.02 R | |
Lead | solid | 0.129 | 26.4 | 1.44 | 3.18 R | |
Lithium | solid | 3.58 | 24.8 | 1.912 | 2.98 R | |
Lithium at 181 °C | liquid | 4.379 | 30.33 | 2.242 | 3.65 R | |
Magnesium | solid | 1.02 | 24.9 | 1.773 | 2.99 R | |
Mercury | liquid | 0.1395 | 27.98 | 1.888 | 3.36 R | |
Methane at 2 °C | gas | 2.191 | 35.69 | 0.66 R | ||
Methanol (298 K) | liquid | 2.14 | 68.62 | 1.38 R | ||
Nitrogen | gas | 1.040 | 29.12 | 20.8 | 1.25 R | |
Neon | gas | 1.0301 | 20.7862 | 12.4717 | 1.50 R | |
Oxygen | gas | 0.918 | 29.38 | 21.0 | 1.26 R | |
Paraffin wax C25H52 |
solid | 2.5 (ave) | 900 | 2.325 | 1.41 R | |
Polyethylene (rotomolding grade) |
solid | 2.3027 | ||||
Polyethylene (rotomolding grade) |
liquid | 2.9308 | ||||
Silica (fused) | solid | 0.703 | 42.2 | 1.547 | 1.69 R | |
Silver | solid | 0.233 | 24.9 | 2.44 | 2.99 R | |
Sodium | solid | 1.230 | 28.23 | 3.39 R | ||
Steel | solid | 0.466 | ||||
Tin | solid | 0.227 | 27.112 | 3.26 R | ||
Titanium | solid | 0.523 | 26.060 | 3.13 R | ||
Tungsten | solid | 0.134 | 24.8 | 2.58 | 2.98 R | |
Uranium | solid | 0.116 | 27.7 | 2.216 | 3.33 R | |
Water at 100 °C (steam) | gas | 2.080 | 37.47 | 28.03 | 1.12 R | |
Water at 25 °C | liquid | 4.1813 | 75.327 | 74.53 | 4.1796 | 3.02 R |
Water at 100 °C | liquid | 4.1813 | 75.327 | 74.53 | 4.2160 | 3.02 R |
Water at −10 °C (ice) | solid | 2.11 | 38.09 | 1.938 | 1.53 R | |
Zinc | solid | 0.387 | 25.2 | 2.76 | 3.03 R | |
Substance | Phase | Cp J/(g·K) |
Cp,m J/(mol·K) |
Cv,m J/(mol·K) |
Volumetric heat capacity J/(cm3·K) |
Read more about this topic: Heat Capacity
Famous quotes containing the words table, specific, heat and/or capacities:
“A big leather-bound volume makes an ideal razorstrap. A thin book is useful to stick under a table with a broken caster to steady it. A large, flat atlas can be used to cover a window with a broken pane. And a thick, old-fashioned heavy book with a clasp is the finest thing in the world to throw at a noisy cat.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)
“The permanence of all books is fixed by no effort friendly or hostile, but by their own specific gravity, or the intrinsic importance of their contents to the constant mind of man.”
—Ralph Waldo Emerson (18031882)
“Why does man freeze to death trying to reach the North Pole? Why does man drive himself to suffer the steam and heat of the Amazon? Why does he stagger his mind with the mathematics of the sky? Once the question mark has arisen in the human brain the answer must be found, if it takes a hundred years. A thousand years.”
—Walter Reisch (19031963)
“During the first World War women in the United States had a chance to try their capacities in wider fields of executive leadership in industry. Must we always wait for war to give us opportunity? And must the pendulum always swing back in the busy world of work and workers during times of peace?”
—Mary Barnett Gilson (1877?)