Table of Specific Heat Capacities
See also: List of thermal conductivitiesNote that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong-Petit limit of 25 J/(mol·K) = 3 R per mole of atoms (see the last column of this table). Paraffin, for example, has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
In the last column, major departures of solids at standard temperatures from the Dulong-Petit law value of 3R, are usually due to low atomic weight plus high bond strength (as in diamond) causing some vibration modes to have too much energy to be available to store thermal energy at the measured temperature. For gases, departure from 3R per mole of atoms in this table is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to other atoms, as happens in many solids.
Substance | Phase | (mass) specific heat capacity cp or cm J·g−1·K−1 |
Constant pressure molar heat capacity Cp,m J·mol−1·K−1 |
Constant volume molar heat capacity Cv,m J·mol−1·K−1 |
Volumetric heat capacity Cv J·cm−3·K−1 |
Constant vol. atom-molar heat capacity in units of R Cv,m(atom) atom-mol−1 |
---|---|---|---|---|---|---|
Air (Sea level, dry, 0 °C (273.15 K)) |
gas | 1.0035 | 29.07 | 20.7643 | 0.001297 | ~ 1.25 R |
Air (typical room conditionsA) |
gas | 1.012 | 29.19 | 20.85 | 0.00121 | ~ 1.25 R |
Aluminium | solid | 0.897 | 24.2 | 2.422 | 2.91 R | |
Ammonia | liquid | 4.700 | 80.08 | 3.263 | 3.21 R | |
Animal tissue (incl. human) |
mixed | 3.5 | 3.7* | |||
Antimony | solid | 0.207 | 25.2 | 1.386 | 3.03 R | |
Argon | gas | 0.5203 | 20.7862 | 12.4717 | 1.50 R | |
Arsenic | solid | 0.328 | 24.6 | 1.878 | 2.96 R | |
Beryllium | solid | 1.82 | 16.4 | 3.367 | 1.97 R | |
Bismuth | solid | 0.123 | 25.7 | 1.20 | 3.09 R | |
Cadmium | solid | 0.231 | 26.02 | 3.13 R | ||
Carbon dioxide CO2 | gas | 0.839* | 36.94 | 28.46 | 1.14 R | |
Chromium | solid | 0.449 | 23.35 | 2.81 R | ||
Copper | solid | 0.385 | 24.47 | 3.45 | 2.94 R | |
Diamond | solid | 0.5091 | 6.115 | 1.782 | 0.74 R | |
Ethanol | liquid | 2.44 | 112 | 1.925 | 1.50 R | |
Gasoline (octane) | liquid | 2.22 | 228 | 1.64 | 1.05 R | |
Glass | solid | 0.84 | ||||
Gold | solid | 0.129 | 25.42 | 2.492 | 3.05 R | |
Granite | solid | 0.790 | 2.17 | |||
Graphite | solid | 0.710 | 8.53 | 1.534 | 1.03 R | |
Helium | gas | 5.1932 | 20.7862 | 12.4717 | 1.50 R | |
Hydrogen | gas | 14.30 | 28.82 | 1.23 R | ||
Hydrogen sulfide H2S | gas | 1.015* | 34.60 | 1.05 R | ||
Iron | solid | 0.450 | 25.1 | 3.537 | 3.02 R | |
Lead | solid | 0.129 | 26.4 | 1.44 | 3.18 R | |
Lithium | solid | 3.58 | 24.8 | 1.912 | 2.98 R | |
Lithium at 181 °C | liquid | 4.379 | 30.33 | 2.242 | 3.65 R | |
Magnesium | solid | 1.02 | 24.9 | 1.773 | 2.99 R | |
Mercury | liquid | 0.1395 | 27.98 | 1.888 | 3.36 R | |
Methane at 2 °C | gas | 2.191 | 35.69 | 0.66 R | ||
Methanol (298 K) | liquid | 2.14 | 68.62 | 1.38 R | ||
Nitrogen | gas | 1.040 | 29.12 | 20.8 | 1.25 R | |
Neon | gas | 1.0301 | 20.7862 | 12.4717 | 1.50 R | |
Oxygen | gas | 0.918 | 29.38 | 21.0 | 1.26 R | |
Paraffin wax C25H52 |
solid | 2.5 (ave) | 900 | 2.325 | 1.41 R | |
Polyethylene (rotomolding grade) |
solid | 2.3027 | ||||
Polyethylene (rotomolding grade) |
liquid | 2.9308 | ||||
Silica (fused) | solid | 0.703 | 42.2 | 1.547 | 1.69 R | |
Silver | solid | 0.233 | 24.9 | 2.44 | 2.99 R | |
Sodium | solid | 1.230 | 28.23 | 3.39 R | ||
Steel | solid | 0.466 | ||||
Tin | solid | 0.227 | 27.112 | 3.26 R | ||
Titanium | solid | 0.523 | 26.060 | 3.13 R | ||
Tungsten | solid | 0.134 | 24.8 | 2.58 | 2.98 R | |
Uranium | solid | 0.116 | 27.7 | 2.216 | 3.33 R | |
Water at 100 °C (steam) | gas | 2.080 | 37.47 | 28.03 | 1.12 R | |
Water at 25 °C | liquid | 4.1813 | 75.327 | 74.53 | 4.1796 | 3.02 R |
Water at 100 °C | liquid | 4.1813 | 75.327 | 74.53 | 4.2160 | 3.02 R |
Water at −10 °C (ice) | solid | 2.11 | 38.09 | 1.938 | 1.53 R | |
Zinc | solid | 0.387 | 25.2 | 2.76 | 3.03 R | |
Substance | Phase | Cp J/(g·K) |
Cp,m J/(mol·K) |
Cv,m J/(mol·K) |
Volumetric heat capacity J/(cm3·K) |
Read more about this topic: Heat Capacity
Famous quotes containing the words table, specific, heat and/or capacities:
“Will you greet your doom
As final; set him loaves and wine; knowing
The game is finished when he plays his ace,
And overturn the table and go into the next room?”
—Philip Larkin (19221986)
“I was asking for something specific and perfect for my city,
Whereupon lo! upsprang the aboriginal name.
Now I see what there is in a name, a word, liquid, sane, unruly,
musical, self-sufficient,
I see that the word of my city is that word from of old,
Because I see that word nested in nests of water-bays, superb,
Rich, hemmd thick all around with sailships and steamships, an
island sixteen miles long, solid-founded,”
—Walt Whitman (18191892)
“Coal is a portable climate. It carries the heat of the tropics to Labrador and the polar circle; and it is the means of transporting itself whithersoever it is wanted. Watt and Stephenson whispered in the ear of mankind their secret, that a half-ounce of coal will draw two tons a mile, and coal carries coal, by rail and by boat, to make Canada as warm as Calcutta, and with its comfort brings its industrial power.”
—Ralph Waldo Emerson (18031882)
“You that are old consider not the capacities of us that are
young.”
—William Shakespeare (15641616)