Hausdorff Dimension - Self-similar Sets

Self-similar Sets

Many sets defined by a self-similarity condition have dimensions which can be determined explicitly. Roughly, a set E is self-similar if it is the fixed point of a set-valued transformation ψ, that is ψ(E) = E, although the exact definition is given below.

Theorem. Suppose

are contractive mappings on Rn with contraction constant rj < 1. Then there is a unique non-empty compact set A such that

The theorem follows from Stefan Banach's contractive mapping fixed point theorem applied to the complete metric space of non-empty compact subsets of Rn with the Hausdorff distance.

Read more about this topic:  Hausdorff Dimension

Famous quotes containing the word sets:

    This is certainly not the place for a discourse about what festivals are for. Discussions on this theme were plentiful during that phase of preparation and on the whole were fruitless. My experience is that discussion is fruitless. What sets forth and demonstrates is the sight of events in action, is living through these events and understanding them.
    Doris Lessing (b. 1919)