Hausdorff Dimension - Formal Definition

Formal Definition

Let be a metric space. If and, the -dimensional Hausdorff content of is defined by

In other words, is the infimum of the set of numbers such that there is some (indexed) collection of balls covering with for each which satisfies . (Here, we use the standard convention that inf Ø =∞.) The Hausdorff dimension of is defined by

Equivalently, may be defined as the infimum of the set of such that the -dimensional Hausdorff measure of is zero. This is the same as the supremum of the set of such that the -dimensional Hausdorff measure of is infinite (except that when this latter set of numbers is empty the Hausdorff dimension is zero).

Read more about this topic:  Hausdorff Dimension

Famous quotes containing the words formal and/or definition:

    The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.
    Franz Grillparzer (1791–1872)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)