Hartley Transform - Definition

Definition

The Hartley transform of a function f(t) is defined by:


H(\omega) = \left\{\mathcal{H}f\right\}(\omega) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty
f(t) \, \mbox{cas}(\omega t) \mathrm{d}t,

where can in applications be an angular frequency and


\mbox{cas}(t) = \cos(t) + \sin(t) = \sqrt{2} \sin (t+\pi /4) = \sqrt{2} \cos (t-\pi /4)\,

is the cosine-and-sine or Hartley kernel. In engineering terms, this transform takes a signal (function) from the time-domain to the Hartley spectral domain (frequency domain).

Read more about this topic:  Hartley Transform

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)