Hartley Transform - Definition

Definition

The Hartley transform of a function f(t) is defined by:


H(\omega) = \left\{\mathcal{H}f\right\}(\omega) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty
f(t) \, \mbox{cas}(\omega t) \mathrm{d}t,

where can in applications be an angular frequency and


\mbox{cas}(t) = \cos(t) + \sin(t) = \sqrt{2} \sin (t+\pi /4) = \sqrt{2} \cos (t-\pi /4)\,

is the cosine-and-sine or Hartley kernel. In engineering terms, this transform takes a signal (function) from the time-domain to the Hartley spectral domain (frequency domain).

Read more about this topic:  Hartley Transform

Famous quotes containing the word definition:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)