Harmonic Number - Generating Functions

Generating Functions

A generating function for the harmonic numbers is

\sum_{n=1}^\infty z^n H_n =
\frac {-\ln(1-z)}{1-z},

where is the natural logarithm. An exponential generating function is

\sum_{n=1}^\infty \frac {z^n}{n!} H_n = -e^z \sum_{k=1}^\infty \frac{1}{k} \frac {(-z)^k}{k!} =
e^z \mbox {Ein}(z)

where is the entire exponential integral. Note that

\mbox {Ein}(z) = \mbox{E}_1(z) + \gamma + \ln z =
\Gamma (0,z) + \gamma + \ln z\,

where is the incomplete gamma function.

Read more about this topic:  Harmonic Number

Famous quotes containing the word functions:

    The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.
    Cyril Connolly (1903–1974)