Connections With Complex Function Theory
The real and imaginary part of any holomorphic function yield harmonic functions on R2 (these are said to be a pair of harmonic conjugate functions). Conversely, any harmonic function u on an open subset Ω of R2 is locally the real part of a holomorphic function. This is immediately seen observing that, writing z = x + iy, the complex function g(z) := ux − i uy is holomorphic in Ω because it satisfies the Cauchy–Riemann equations. Therefore, g has locally a primitive f, and u is the real part of f up to a constant, as ux is the real part of .
Although the above correspondence with holomorphic functions only holds for functions of two real variables, still harmonic functions in n variables enjoy a number of properties typical of holomorphic functions. They are (real) analytic; they have a maximum principle and a mean-value principle; a theorem of removal of singularities as well as a Liouville theorem one holds for them in analogy to the corresponding theorems in complex functions theory.
Read more about this topic: Harmonic Function
Famous quotes containing the words connections, complex, function and/or theory:
“The quickness with which all the stuff from childhood can reduce adult siblings to kids again underscores the strong and complex connections between brothers and sisters.... It doesnt seem to matter how much time has elapsed or how far weve traveled. Our brothers and sisters bring us face to face with our former selves and remind us how intricately bound up we are in each others lives.”
—Jane Mersky Leder (20th century)
“All of life and human relations have become so incomprehensibly complex that, when you think about it, it becomes terrifying and your heart stands still.”
—Anton Pavlovich Chekhov (18601904)
“The press and politicians. A delicate relationship. Too close, and danger ensues. Too far apart and democracy itself cannot function without the essential exchange of information. Creative leaks, a discreet lunch, interchange in the Lobby, the art of the unattributable telephone call, late at night.”
—Howard Brenton (b. 1942)
“Lucretius
Sings his great theory of natural origins and of wise conduct; Plato
smiling carves dreams, bright cells
Of incorruptible wax to hive the Greek honey.”
—Robinson Jeffers (18871962)