Connections With Complex Function Theory
The real and imaginary part of any holomorphic function yield harmonic functions on R2 (these are said to be a pair of harmonic conjugate functions). Conversely, any harmonic function u on an open subset Ω of R2 is locally the real part of a holomorphic function. This is immediately seen observing that, writing z = x + iy, the complex function g(z) := ux − i uy is holomorphic in Ω because it satisfies the Cauchy–Riemann equations. Therefore, g has locally a primitive f, and u is the real part of f up to a constant, as ux is the real part of .
Although the above correspondence with holomorphic functions only holds for functions of two real variables, still harmonic functions in n variables enjoy a number of properties typical of holomorphic functions. They are (real) analytic; they have a maximum principle and a mean-value principle; a theorem of removal of singularities as well as a Liouville theorem one holds for them in analogy to the corresponding theorems in complex functions theory.
Read more about this topic: Harmonic Function
Famous quotes containing the words connections, complex, function and/or theory:
“Imagination is an almost divine faculty which, without recourse to any philosophical method, immediately perceives everything: the secret and intimate connections between things, correspondences and analogies.”
—Charles Baudelaire (18211867)
“In the case of all other sciences, arts, skills, and crafts, everyone is convinced that a complex and laborious programme of learning and practice is necessary for competence. Yet when it comes to philosophy, there seems to be a currently prevailing prejudice to the effect that, although not everyone who has eyes and fingers, and is given leather and last, is at once in a position to make shoes, everyone nevertheless immediately understands how to philosophize.”
—Georg Wilhelm Friedrich Hegel (17701831)
“My function in life is not to be a politician in Parliament: it is to get something done.”
—Bernadette Devlin (b. 1947)
“There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.”
—A.J. (Alfred Jules)