Harmonic Function - Connections With Complex Function Theory

Connections With Complex Function Theory

The real and imaginary part of any holomorphic function yield harmonic functions on R2 (these are said to be a pair of harmonic conjugate functions). Conversely, any harmonic function u on an open subset Ω of R2 is locally the real part of a holomorphic function. This is immediately seen observing that, writing z = x + iy, the complex function g(z) := ux − i uy is holomorphic in Ω because it satisfies the Cauchy–Riemann equations. Therefore, g has locally a primitive f, and u is the real part of f up to a constant, as ux is the real part of .

Although the above correspondence with holomorphic functions only holds for functions of two real variables, still harmonic functions in n variables enjoy a number of properties typical of holomorphic functions. They are (real) analytic; they have a maximum principle and a mean-value principle; a theorem of removal of singularities as well as a Liouville theorem one holds for them in analogy to the corresponding theorems in complex functions theory.

Read more about this topic:  Harmonic Function

Famous quotes containing the words connections with, connections, complex, function and/or theory:

    Growing up human is uniquely a matter of social relations rather than biology. What we learn from connections within the family takes the place of instincts that program the behavior of animals; which raises the question, how good are these connections?
    Elizabeth Janeway (b. 1913)

    I have no connections here; only gusty collisions,
    rootless seedlings forced into bloom, that collapse.
    ...
    I am the Visiting Poet: a real unicorn,
    a wind-up plush dodo, a wax museum of the Movement.
    People want to push the buttons and see me glow.
    Marge Piercy (b. 1936)

    Specialization is a feature of every complex organization, be it social or natural, a school system, garden, book, or mammalian body.
    Catharine R. Stimpson (b. 1936)

    The intension of a proposition comprises whatever the proposition entails: and it includes nothing else.... The connotation or intension of a function comprises all that attribution of this predicate to anything entails as also predicable to that thing.
    Clarence Lewis (1883–1964)

    The theory of the Communists may be summed up in the single sentence: Abolition of private property.
    Karl Marx (1818–1883)