Hardy Space - Hardy Spaces For The Upper Half Plane

Hardy Spaces For The Upper Half Plane

It is possible to define Hardy spaces on other domains than the disc, and in many applications Hardy spaces on a complex half-plane (usually the right half-plane or upper half-plane) are used.

The Hardy space on the upper half-plane is defined to be the space of holomorphic functions f on with bounded (quasi-)norm, the norm being given by

The corresponding is defined as functions of bounded norm, with the norm given by

Although the unit disk and the upper half-plane can be mapped to one another by means of Möbius transformations, they are not interchangeable as domains for Hardy spaces. Contributing to this difference is the fact that the unit circle has finite (one-dimensional) Lebesgue measure while the real line does not. However, for H2, one may still state the following theorem: Given the Möbius transformation with

then there is an isometric isomorphism

with

Read more about this topic:  Hardy Space

Famous quotes containing the words hardy, spaces, upper and/or plane:

    The value of old age depends upon the person who reaches it. To some men of early performance it is useless. To others, who are late to develop, it just enables them to finish the job.
    —Thomas Hardy (1840–1928)

    We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.
    Henry David Thoreau (1817–1862)

    The first to strike will gain the upper hand.
    Chinese proverb.

    It was the most ungrateful and unjust act ever perpetrated by a republic upon a class of citizens who had worked and sacrificed and suffered as did the women of this nation in the struggle of the Civil War only to be rewarded at its close by such unspeakable degradation as to be reduced to the plane of subjects to enfranchised slaves.
    Anna Howard Shaw (1847–1919)