Hamming Distance - Special Properties

Special Properties

For a fixed length n, the Hamming distance is a metric on the vector space of the words of length n, as it obviously fulfills the conditions of non-negativity, identity of indiscernibles and symmetry, and it can be shown easily by complete induction that it satisfies the triangle inequality as well. The Hamming distance between two words a and b can also be seen as the Hamming weight of ab for an appropriate choice of the − operator.

For binary strings a and b the Hamming distance is equal to the number of ones (population count) in a XOR b. The metric space of length-n binary strings, with the Hamming distance, is known as the Hamming cube; it is equivalent as a metric space to the set of distances between vertices in a hypercube graph. One can also view a binary string of length n as a vector in by treating each symbol in the string as a real coordinate; with this embedding, the strings form the vertices of an n-dimensional hypercube, and the Hamming distance of the strings is equivalent to the Manhattan distance between the vertices.

Read more about this topic:  Hamming Distance

Famous quotes containing the words special and/or properties:

    When, in some obscure country town, the farmers come together to a special town meeting, to express their opinion on some subject which is vexing to the land, that, I think, is the true Congress, and the most respectable one that is ever assembled in the United States.
    Henry David Thoreau (1817–1862)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)