History and Applications
The Hamming distance is named after Richard Hamming, who introduced it in his fundamental paper on Hamming codes Error detecting and error correcting codes in 1950. It is used in telecommunication to count the number of flipped bits in a fixed-length binary word as an estimate of error, and therefore is sometimes called the signal distance. Hamming weight analysis of bits is used in several disciplines including information theory, coding theory, and cryptography. However, for comparing strings of different lengths, or strings where not just substitutions but also insertions or deletions have to be expected, a more sophisticated metric like the Levenshtein distance is more appropriate. For q-ary strings over an alphabet of size q ≥ 2 the Hamming distance is applied in case of orthogonal modulation, while the Lee distance is used for phase modulation. If q = 2 or q = 3 both distances coincide.
The Hamming distance is also used in systematics as a measure of genetic distance.
On a grid (such as a chessboard), the points at a Lee distance of 1 constitute the von Neumann neighborhood of that point.
Read more about this topic: Hamming Distance
Famous quotes containing the word history:
“It is the true office of history to represent the events themselves, together with the counsels, and to leave the observations and conclusions thereupon to the liberty and faculty of every mans judgement.”
—Francis Bacon (15611626)