Hamiltonian Path Problem - Relation Between Problems

Relation Between Problems

There is a simple relation between the problems of finding a Hamiltonian path and a Hamiltonian cycle. In one direction, the Hamiltonian path problem for graph G is equivalent to the Hamiltonian cycle problem in a graph H obtained from G by adding a new vertex and connecting it to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a Hamiltonian cycle.

In the other direction, a graph G has a Hamiltonian cycle using edge uv if and only if the graph H obtained from G by replacing the edge by a pair of vertices of degree 1, one connected to u and one connected to v, has a Hamiltonian path. Therefore, by trying this replacement for all edges incident to some chosen vertex of G, the Hamiltonian cycle problem can be solved by at most n Hamiltonian path computations, where n is the number of vertices in the graph.

The Hamiltonian cycle problem is also a special case of the travelling salesman problem, obtained by setting the distance between two cities to one if they are adjacent and two otherwise, and verifying that the total distance travelled is equal to n (if so, the route is a Hamiltonian circuit; if there is no Hamiltonian circuit then the shortest route will be longer).

Read more about this topic:  Hamiltonian Path Problem

Famous quotes containing the words relation between, relation and/or problems:

    We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.
    Jean Baudrillard (b. 1929)

    The whole point of Camp is to dethrone the serious. Camp is playful, anti-serious. More precisely, Camp involves a new, more complex relation to “the serious.” One can be serious about the frivolous, frivolous about the serious.
    Susan Sontag (b. 1933)

    We are all adult learners. Most of us have learned a good deal more out of school than in it. We have learned from our families, our work, our friends. We have learned from problems resolved and tasks achieved but also from mistakes confronted and illusions unmasked. . . . Some of what we have learned is trivial: some has changed our lives forever.
    Laurent A. Daloz (20th century)