Hamiltonian Mechanics - Relativistic Charged Particle in An Electromagnetic Field

Relativistic Charged Particle in An Electromagnetic Field

The Lagrangian for a relativistic charged particle is given by:

Thus the particle's canonical (total) momentum is

that is, the sum of the kinetic momentum and the potential momentum.

Solving for the velocity, we get

So the Hamiltonian is

From this we get the force equation (equivalent to the Euler–Lagrange equation)

from which one can derive

An equivalent expression for the Hamiltonian as function of the relativistic (kinetic) momentum, is

This has the advantage that can be measured experimentally whereas cannot. Notice that the Hamiltonian (total energy) can be viewed as the sum of the relativistic energy (kinetic+rest), plus the potential energy,

Read more about this topic:  Hamiltonian Mechanics

Famous quotes containing the words charged, particle and/or field:

    True and false are attributes of speech not of things. And where speech is not, there is neither truth nor falsehood. Error there may be, as when we expect that which shall not be; or suspect what has not been: but in neither case can a man be charged with untruth.
    Thomas Hobbes (1588–1679)

    The way to learn German, is, to read the same dozen pages over and over a hundred times, till you know every word and particle in them, and can pronounce and repeat them by heart.
    Ralph Waldo Emerson (1803–1882)

    Whether in the field of health, education or welfare, I have put my emphasis on preventive rather than curative programs and tried to influence our elaborate, costly and ill- co-ordinated welfare organizations in that direction. Unfortunately the momentum of social work is still directed toward compensating the victims of our society for its injustices rather than eliminating those injustices.
    Agnes E. Meyer (1887–1970)