Relativistic Charged Particle in An Electromagnetic Field
The Lagrangian for a relativistic charged particle is given by:
Thus the particle's canonical (total) momentum is
that is, the sum of the kinetic momentum and the potential momentum.
Solving for the velocity, we get
So the Hamiltonian is
From this we get the force equation (equivalent to the Euler–Lagrange equation)
from which one can derive
An equivalent expression for the Hamiltonian as function of the relativistic (kinetic) momentum, is
This has the advantage that can be measured experimentally whereas cannot. Notice that the Hamiltonian (total energy) can be viewed as the sum of the relativistic energy (kinetic+rest), plus the potential energy,
Read more about this topic: Hamiltonian Mechanics
Famous quotes containing the words charged, particle and/or field:
“True and false are attributes of speech not of things. And where speech is not, there is neither truth nor falsehood. Error there may be, as when we expect that which shall not be; or suspect what has not been: but in neither case can a man be charged with untruth.”
—Thomas Hobbes (15881679)
“Standing on the bare ground,my head bathed by the blithe air, and uplifted into infinite space,all mean egotism vanishes. I become a transparent eye-ball; I am nothing; I see all; the currents of the Universal Being circulate through me; I am part and particle of God.”
—Ralph Waldo Emerson (18031882)
“Give me the splendid silent sun
with all his beams full-dazzling,
Give me juicy autumnal fruit ripe and red from the orchard,
Give me a field where the unmowd grass grows,
Give me an arbor, give me the trellisd grape,
Give me fresh corn and wheat, give me serene-moving animals teaching content,”
—Walt Whitman (18191892)