Hamiltonian Mechanics - Mathematical Formalism

Mathematical Formalism

Any smooth real-valued function H on a symplectic manifold can be used to define a Hamiltonian system. The function H is known as the Hamiltonian or the energy function. The symplectic manifold is then called the phase space. The Hamiltonian induces a special vector field on the symplectic manifold, known as the Hamiltonian vector field.

The Hamiltonian vector field (a special type of symplectic vector field) induces a Hamiltonian flow on the manifold. This is a one-parameter family of transformations of the manifold (the parameter of the curves is commonly called the time); in other words an isotopy of symplectomorphisms, starting with the identity. By Liouville's theorem, each symplectomorphism preserves the volume form on the phase space. The collection of symplectomorphisms induced by the Hamiltonian flow is commonly called the Hamiltonian mechanics of the Hamiltonian system.

The symplectic structure induces a Poisson bracket. The Poisson bracket gives the space of functions on the manifold the structure of a Lie algebra.

Given a function f

If we have a probability distribution, ρ, then (since the phase space velocity has zero divergence, and probability is conserved) its convective derivative can be shown to be zero and so

This is called Liouville's theorem. Every smooth function G over the symplectic manifold generates a one-parameter family of symplectomorphisms and if { G, H } = 0, then G is conserved and the symplectomorphisms are symmetry transformations.

A Hamiltonian may have multiple conserved quantities Gi. If the symplectic manifold has dimension 2n and there are n functionally independent conserved quantities Gi which are in involution (i.e., { Gi, Gj } = 0), then the Hamiltonian is Liouville integrable. The Liouville–Arnol'd theorem says that locally, any Liouville integrable Hamiltonian can be transformed via a symplectomorphism in a new Hamiltonian with the conserved quantities Gi as coordinates; the new coordinates are called action-angle coordinates. The transformed Hamiltonian depends only on the Gi, and hence the equations of motion have the simple form

for some function F (Arnol'd et al., 1988). There is an entire field focusing on small deviations from integrable systems governed by the KAM theorem.

The integrability of Hamiltonian vector fields is an open question. In general, Hamiltonian systems are chaotic; concepts of measure, completeness, integrability and stability are poorly defined. At this time, the study of dynamical systems is primarily qualitative, and not a quantitative science.

Read more about this topic:  Hamiltonian Mechanics

Famous quotes containing the words mathematical and/or formalism:

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)

    It is sentimentalism to assume that the teaching of life can always be fitted to the child’s interests, just as it is empty formalism to force the child to parrot the formulas of adult society. Interests can be created and stimulated.
    Jerome S. Bruner (20th century)