Halley's Comet - Orbit and Origin

Orbit and Origin

Halley's orbital period over the last 3 centuries has been between 75–76 years, though it has varied between 74–79 years since 240 BCE. Its orbit around the Sun is highly elliptical, with an orbital eccentricity of 0.967 (with 0 being a perfect circle and 1 being a parabolic trajectory). The perihelion, the point in the comet's orbit when it is nearest the Sun, is just 0.6 AU (between the orbits of Mercury and Venus), while its aphelion, or farthest distance from the Sun, is 35 AU (roughly the distance of Pluto). Unusually for an object in the Solar System, Halley's orbit is retrograde; it orbits the Sun in the opposite direction to the planets, or clockwise from above the Sun's north pole. The orbit is inclined by 18° to the ecliptic, with much of it lying south of the ecliptic, but is retrograde (true inclination is 162°). Due to the retrograde orbit, it has one of the highest velocities relative to the Earth of any object in the Solar System. The 1910 passage was at a relative velocity of 70.56 km/s (157,838 mph or 254,016 km/h). Because its orbit comes close to Earth's in two places, Halley's Comet is the parent body of two meteor showers: the Eta Aquariids in early May, and the Orionids in late October. However, observations conducted around the time of Halley's Comet's appearance in 1986 suggest that the Eta Aquarid meteor shower might not originate from Halley's Comet, though it might be perturbed by the comet.

Halley is classified as a periodic or short-period comet; one with an orbit lasting 200 years or less. This contrasts it with long-period comets, whose orbits last for thousands of years. Periodic comets have an average inclination to the ecliptic of only ten degrees, and an orbital period of just 6.5 years, so Halley's orbit is atypical. Most short-period comets (those with orbital periods shorter than 20 years and inclinations of 20–30 degrees or less) are called Jupiter-family comets. Those like Halley, with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees, are called Halley-type comets. To date, only 54 Halley-type comets have been observed, compared with nearly 400 identified Jupiter-family comets.

The orbits of the Halley-type comets suggest that they were originally long-period comets whose orbits were perturbed by the gravity of the giant planets and directed into the inner Solar System. If Halley was once a long-period comet, it is likely to have originated in the Oort Cloud, a sphere of cometary bodies that has an inner edge of 20,000–50,000 AU. Conversely the Jupiter-family comets are believed to originate in the Kuiper belt, a flat disc of icy debris between 30 AU (Neptune's orbit) and 50 AU from the Sun (in the scattered disc). Another point of origin for the Halley-type comets has been proposed. In 2008, a trans-Neptunian object with a retrograde orbit similar to Halley's was discovered, 2008 KV42, whose orbit takes it from just outside that of Uranus to twice the distance of Pluto. It may be a member of a new population of small Solar System bodies that serves as the source of Halley-type comets.

Halley's Comet has probably been in its current orbit for 16,000–200,000 years, although it is not possible to numerically integrate its orbit for more than a few tens of apparitions, and close approaches before 837 CE can only be verified from recorded observations. The non-gravitational effects can be crucial; as Halley approaches the Sun, it expels jets of sublimating gas from its surface, which knock it very slightly off its orbital path. These orbital changes can cause deviations in its perihelion of four days.

In 1989, Boris Chirikov and Vitaly Vecheslavov performed an analysis of 46 apparitions of Halley's Comet taken from historical records and computer simulations. These studies showed that its dynamics were chaotic and unpredictable on long timescales. Halley's projected lifetime could be as long as 10 million years. More recent work suggests that Halley will evaporate, or split in two, within the next few tens of thousands of years, or will be ejected from the Solar System within a few hundred thousand years. Observations by D.W. Hughes suggest that Halley's nucleus has been reduced in mass by 80–90% over the last 2000–3000 revolutions.

Read more about this topic:  Halley's Comet

Famous quotes containing the words orbit and, orbit and/or origin:

    Words can have no single fixed meaning. Like wayward electrons, they can spin away from their initial orbit and enter a wider magnetic field. No one owns them or has a proprietary right to dictate how they will be used.
    David Lehman (b. 1948)

    Words can have no single fixed meaning. Like wayward electrons, they can spin away from their initial orbit and enter a wider magnetic field. No one owns them or has a proprietary right to dictate how they will be used.
    David Lehman (b. 1948)

    Though I do not believe that a plant will spring up where no seed has been, I have great faith in a seed,—a, to me, equally mysterious origin for it.
    Henry David Thoreau (1817–1862)