Counting Zeros
From a more advanced point of view: every zero of a vector field has a (non-zero) "index", and it can be shown that the sum of all of the indices at all of the zeros must be two. (This is because the Euler characteristic of the 2-sphere is two.) Therefore there must be at least one zero. This is a consequence of the Poincaré–Hopf theorem. In the case of the torus, the Euler characteristic is 0; and it is possible to "comb a hairy doughnut flat". In this regard, it follows that for any compact regular 2-dimensional manifold with non-zero Euler characteristic, any continuous tangent vector field has at least one zero.
Read more about this topic: Hairy Ball Theorem
Famous quotes containing the word counting:
“If all power is in the people, if there is no higher law than their will, and if by counting their votes, their will may be ascertainedthen the people may entrust all their power to anyone, and the power of the pretender and the usurper is then legitimate. It is not to be challenged since it came originally from the sovereign people.”
—Walter Lippmann (18891974)