Haar System
In functional analysis, the Haar system denotes the set of Haar wavelets
In Hilbert space terms, this constitutes a complete orthogonal system for the functions on the unit interval. There is a related Rademacher system of sums of Haar functions, which is an orthogonal system but not complete.
The Haar system (with the natural ordering) is further a Schauder basis for the space for . This basis is unconditional for p > 1.
Read more about this topic: Haar Wavelet
Famous quotes containing the word system:
“For us necessity is not as of old an image without us, with whom we can do warfare; it is a magic web woven through and through us, like that magnetic system of which modern science speaks, penetrating us with a network subtler than our subtlest nerves, yet bearing in it the central forces of the world.”
—Walter Pater (18391894)