Haar Measure - Haar Integral

Using the general theory of Lebesgue integration, one can then define an integral for all Borel measurable functions f on G. This integral is called the Haar integral. If μ is a left Haar measure, then

for any integrable function f. This is immediate for indicator functions, being essentially the definition of left invariance.

Read more about this topic:  Haar Measure

Famous quotes containing the word integral:

    Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.
    Henry David Thoreau (1817–1862)