Features
H.264/AVC/MPEG-4 Part 10 contains a number of new features that allow it to compress video much more effectively than older standards and to provide more flexibility for application to a wide variety of network environments. In particular, some such key features include:
- Multi-picture inter-picture prediction including the following features:
- Using previously encoded pictures as references in a much more flexible way than in past standards, allowing up to 16 reference frames (or 32 reference fields, in the case of interlaced encoding) to be used in some cases. This is in contrast to prior standards, where the limit was typically one; or, in the case of conventional "B pictures" (B-frames), two. This particular feature usually allows modest improvements in bit rate and quality in most scenes. But in certain types of scenes, such as those with repetitive motion or back-and-forth scene cuts or uncovered background areas, it allows a significant reduction in bit rate while maintaining clarity.
- Variable block-size motion compensation (VBSMC) with block sizes as large as 16×16 and as small as 4×4, enabling precise segmentation of moving regions. The supported luma prediction block sizes include 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4, many of which can be used together in a single macroblock. Chroma prediction block sizes are correspondingly smaller according to the chroma subsampling in use.
- The ability to use multiple motion vectors per macroblock (one or two per partition) with a maximum of 32 in the case of a B macroblock constructed of 16 4×4 partitions. The motion vectors for each 8×8 or larger partition region can point to different reference pictures.
- The ability to use any macroblock type in B-frames, including I-macroblocks, resulting in much more efficient encoding when using B-frames. This feature was notably left out from MPEG-4 ASP.
- Six-tap filtering for derivation of half-pel luma sample predictions, for sharper subpixel motion-compensation. Quarter-pixel motion is derived by linear interpolation of the halfpel values, to save processing power.
- Quarter-pixel precision for motion compensation, enabling precise description of the displacements of moving areas. For chroma the resolution is typically halved both vertically and horizontally (see 4:2:0) therefore the motion compensation of chroma uses one-eighth chroma pixel grid units.
- Weighted prediction, allowing an encoder to specify the use of a scaling and offset when performing motion compensation, and providing a significant benefit in performance in special cases—such as fade-to-black, fade-in, and cross-fade transitions. This includes implicit weighted prediction for B-frames, and explicit weighted prediction for P-frames.
- Spatial prediction from the edges of neighboring blocks for "intra" coding, rather than the "DC"-only prediction found in MPEG-2 Part 2 and the transform coefficient prediction found in H.263v2 and MPEG-4 Part 2. This includes luma prediction block sizes of 16×16, 8×8, and 4×4 (of which only one type can be used within each macroblock).
- Lossless macroblock coding features including:
- A lossless "PCM macroblock" representation mode in which video data samples are represented directly, allowing perfect representation of specific regions and allowing a strict limit to be placed on the quantity of coded data for each macroblock.
- An enhanced lossless macroblock representation mode allowing perfect representation of specific regions while ordinarily using substantially fewer bits than the PCM mode.
- Flexible interlaced-scan video coding features, including:
- Macroblock-adaptive frame-field (MBAFF) coding, using a macroblock pair structure for pictures coded as frames, allowing 16×16 macroblocks in field mode (compared with MPEG-2, where field mode processing in a picture that is coded as a frame results in the processing of 16×8 half-macroblocks).
- Picture-adaptive frame-field coding (PAFF or PicAFF) allowing a freely selected mixture of pictures coded either as complete frames where both fields are combined together for encoding or as individual single fields.
- New transform design features, including:
- An exact-match integer 4×4 spatial block transform, allowing precise placement of residual signals with little of the "ringing" often found with prior codec designs. This design is conceptually similar to that of the well-known discrete cosine transform (DCT), introduced in 1974 by N. Ahmed, T.Natarajan and K.R.Rao, which is Reference 1 in discrete cosine transform. However, it is simplified and made to provide exactly specified decoding.
- An exact-match integer 8×8 spatial block transform, allowing highly correlated regions to be compressed more efficiently than with the 4×4 transform. This design is conceptually similar to that of the well-known DCT, but simplified and made to provide exactly specified decoding.
- Adaptive encoder selection between the 4×4 and 8×8 transform block sizes for the integer transform operation.
- A secondary Hadamard transform performed on "DC" coefficients of the primary spatial transform applied to chroma DC coefficients (and also luma in one special case) to obtain even more compression in smooth regions.
- A quantization design including:
- Logarithmic step size control for easier bit rate management by encoders and simplified inverse-quantization scaling
- Frequency-customized quantization scaling matrices selected by the encoder for perceptual-based quantization optimization
- An in-loop deblocking filter that helps prevent the blocking artifacts common to other DCT-based image compression techniques, resulting in better visual appearance and compression efficiency
- An entropy coding design including:
- Context-adaptive binary arithmetic coding (CABAC), an algorithm to losslessly compress syntax elements in the video stream knowing the probabilities of syntax elements in a given context. CABAC compresses data more efficiently than CAVLC but requires considerably more processing to decode.
- Context-adaptive variable-length coding (CAVLC), which is a lower-complexity alternative to CABAC for the coding of quantized transform coefficient values. Although lower complexity than CABAC, CAVLC is more elaborate and more efficient than the methods typically used to code coefficients in other prior designs.
- A common simple and highly structured variable length coding (VLC) technique for many of the syntax elements not coded by CABAC or CAVLC, referred to as Exponential-Golomb coding (or Exp-Golomb).
- Loss resilience features including:
- A Network Abstraction Layer (NAL) definition allowing the same video syntax to be used in many network environments. One very fundamental design concept of H.264 is to generate self-contained packets, to remove the header duplication as in MPEG-4's Header Extension Code (HEC). This was achieved by decoupling information relevant to more than one slice from the media stream. The combination of the higher-level parameters is called a parameter set. The H.264 specification includes two types of parameter sets: Sequence Parameter Set (SPS) and Picture Parameter Set (PPS). An active sequence parameter set remains unchanged throughout a coded video sequence, and an active picture parameter set remains unchanged within a coded picture. The sequence and picture parameter set structures contain information such as picture size, optional coding modes employed, and macroblock to slice group map.
- Flexible macroblock ordering (FMO), also known as slice groups, and arbitrary slice ordering (ASO), which are techniques for restructuring the ordering of the representation of the fundamental regions (macroblocks) in pictures. Typically considered an error/loss robustness feature, FMO and ASO can also be used for other purposes.
- Data partitioning (DP), a feature providing the ability to separate more important and less important syntax elements into different packets of data, enabling the application of unequal error protection (UEP) and other types of improvement of error/loss robustness.
- Redundant slices (RS), an error/loss robustness feature that lets an encoder send an extra representation of a picture region (typically at lower fidelity) that can be used if the primary representation is corrupted or lost.
- Frame numbering, a feature that allows the creation of "sub-sequences", enabling temporal scalability by optional inclusion of extra pictures between other pictures, and the detection and concealment of losses of entire pictures, which can occur due to network packet losses or channel errors.
- Switching slices, called SP and SI slices, allowing an encoder to direct a decoder to jump into an ongoing video stream for such purposes as video streaming bit rate switching and "trick mode" operation. When a decoder jumps into the middle of a video stream using the SP/SI feature, it can get an exact match to the decoded pictures at that location in the video stream despite using different pictures, or no pictures at all, as references prior to the switch.
- A simple automatic process for preventing the accidental emulation of start codes, which are special sequences of bits in the coded data that allow random access into the bitstream and recovery of byte alignment in systems that can lose byte synchronization.
- Supplemental enhancement information (SEI) and video usability information (VUI), which are extra information that can be inserted into the bitstream to enhance the use of the video for a wide variety of purposes. SEI FPA (Frame Packing Arrangement) message that contains the 3D arrangement:
- 0: checkerboard - pixels are alternatively from L and R
- 1: column alternation - L and R are interlaced by column
- 2: row alternation - L and R are interlaced by row
- 3: side by side - L is on the left, R on the right
- 4: top bottom - L is on top, R on bottom
- 5: frame alternation - one view per frame
- Auxiliary pictures, which can be used for such purposes as alpha compositing.
- Support of monochrome (4:0:0), 4:2:0, 4:2:2, and 4:4:4 chroma subsampling (depending on the selected profile).
- Support of sample bit depth precision ranging from 8 to 14 bits per sample (depending on the selected profile).
- The ability to encode individual color planes as distinct pictures with their own slice structures, macroblock modes, motion vectors, etc., allowing encoders to be designed with a simple parallelization structure (supported only in the three 4:4:4-capable profiles).
- Picture order count, a feature that serves to keep the ordering of the pictures and the values of samples in the decoded pictures isolated from timing information, allowing timing information to be carried and controlled/changed separately by a system without affecting decoded picture content.
These techniques, along with several others, help H.264 to perform significantly better than any prior standard under a wide variety of circumstances in a wide variety of application environments. H.264 can often perform radically better than MPEG-2 video—typically obtaining the same quality at half of the bit rate or less, especially on high bit rate and high resolution situations.
Like other ISO/IEC MPEG video standards, H.264/AVC has a reference software implementation that can be freely downloaded. Its main purpose is to give examples of H.264/AVC features, rather than being a useful application per se. Some reference hardware design work is also under way in the Moving Picture Experts Group. The above mentioned are complete features of H.264/AVC covering all profiles of H.264. A profile for a codec is a set of features of that codec identified to meet a certain set of specifications of intended applications. This means that many of the features listed are not supported in some profiles. Various profiles of H.264/AVC are discussed in next section.
Read more about this topic: H.264/MPEG-4 AVC
Famous quotes containing the word features:
“It looks as if
Some pallid thing had squashed its features flat
And its eyes shut with overeagerness
To see what people found so interesting
In one another, and had gone to sleep
Of its own stupid lack of understanding,
Or broken its white neck of mushroom stuff
Short off, and died against the windowpane.”
—Robert Frost (18741963)
“These, then, will be some of the features of democracy ... it will be, in all likelihood, an agreeable, lawless, particolored commonwealth, dealing with all alike on a footing of equality, whether they be really equal or not.”
—Plato (c. 427347 B.C.)
“Each reader discovers for himself that, with respect to the simpler features of nature, succeeding poets have done little else than copy his similes.”
—Henry David Thoreau (18171862)