H-infinity Methods in Control Theory - Problem Formulation

Problem Formulation

First, the process has to be represented according to the following standard configuration:

The plant P has two inputs, the exogenous input w, that includes reference signal and disturbances, and the manipulated variables u. There are two outputs, the error signals z that we want to minimize, and the measured variables v, that we use to control the system. v is used in K to calculate the manipulated variable u. Notice that all these are generally vectors, whereas P and K are matrices.

In formulae, the system is:

It is therefore possible to express the dependency of z on w as:

Called the lower linear fractional transformation, is defined (the subscript comes from lower):

Therefore, the objective of control design is to find a controller such that is minimised according to the norm. The same definition applies to control design. The infinity norm of the transfer function matrix is defined as:

where is the maximum singular value of the matrix .

The achievable H norm of the closed loop system is mainly given through the matrix D11 (when the system P is given in the form (A, B1, B2, C1, C2, D11, D12, D22, D21)). There are several ways to come to an H controller:

  • A Youla-Kucera parametrization of the closed loop often leads to very high-order controller.
  • Riccati-based approaches solve 2 Riccati equations to find the controller, but require several simplifying assumptions.
  • An optimization-based reformulation of the Riccati equation uses Linear matrix inequalities and requires fewer assumptions.

Read more about this topic:  H-infinity Methods In Control Theory

Famous quotes containing the words problem and/or formulation:

    Most childhood problems don’t result from “bad” parenting, but are the inevitable result of the growing that parents and children do together. The point isn’t to head off these problems or find ways around them, but rather to work through them together and in doing so to develop a relationship of mutual trust to rely on when the next problem comes along.
    Fred Rogers (20th century)

    You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.
    Gerard Manley Hopkins (1844–1889)