Gumbel Distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. Such a distribution might be used to represent the distribution of the maximum level of a river in a particular year if there was a list of maximum values for the past ten years. It is useful in predicting the chance that an extreme earthquake, flood or other natural disaster will occur.

The potential applicability of the Gumbel distribution to represent the distribution of maxima relates to extreme value theory which indicates that it is likely to be useful if the distribution of the underlying sample data is of the normal or exponential type.

The Gumbel distribution is a particular case of the generalized extreme value distribution (also known as the Fisher-Tippett distribution). It is also known as the log-Weibull distribution and the double exponential distribution (which is sometimes used to refer to the Laplace distribution). It is often incorrectly labelled as Gompertz distribution.

In the latent variable formulation of the multinomial logit model — common in discrete choice theory — the errors of the latent variables follow a Gumbel distribution. This is useful because the difference of two Gumbel-distributed random variables has a logistic distribution.

The Gumbel distribution is named after Emil Julius Gumbel (1891–1966).

Read more about Gumbel Distribution:  Properties, Generating Gumbel Variates, Related Distributions, Application

Famous quotes containing the word distribution:

    The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.
    Rutherford Birchard Hayes (1822–1893)