Combinatorial and Geometric Group Theory
Groups can be described in different ways. Finite groups can be described by writing down the group table consisting of all possible multiplications g • h. A more important way of defining a group is by generators and relations, also called the presentation of a group. Given any set F of generators {gi}i ∈ I, the free group generated by F surjects onto the group G. The kernel of this map is called subgroup of relations, generated by some subset D. The presentation is usually denoted by 〈F | D 〉. For example, the group Z = 〈a | 〉 can be generated by one element a (equal to +1 or −1) and no relations, because n·1 never equals 0 unless n is zero. A string consisting of generator symbols and their inverses is called a word.
Combinatorial group theory studies groups from the perspective of generators and relations. It is particularly useful where finiteness assumptions are satisfied, for example finitely generated groups, or finitely presented groups (i.e. in addition the relations are finite). The area makes use of the connection of graphs via their fundamental groups. For example, one can show that every subgroup of a free group is free.
There are several natural questions arising from giving a group by its presentation. The word problem asks whether two words are effectively the same group element. By relating the problem to Turing machines, one can show that there is in general no algorithm solving this task. Another, generally harder, algorithmically insoluble problem is the group isomorphism problem, which asks whether two groups given by different presentations are actually isomorphic. For example the additive group Z of integers can also be presented by
- 〈x, y | xyxyx = e〉;
it may not be obvious that these groups are isomorphic.
Geometric group theory attacks these problems from a geometric viewpoint, either by viewing groups as geometric objects, or by finding suitable geometric objects a group acts on. The first idea is made precise by means of the Cayley graph, whose vertices correspond to group elements and edges correspond to right multiplication in the group. Given two elements, one constructs the word metric given by the length of the minimal path between the elements. A theorem of Milnor and Svarc then says that given a group G acting in a reasonable manner on a metric space X, for example a compact manifold, then G is quasi-isometric (i.e. looks similar from the far) to the space X.
Read more about this topic: Group Theory
Famous quotes containing the words geometric, group and/or theory:
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)
“The conflict between the need to belong to a group and the need to be seen as unique and individual is the dominant struggle of adolescence.”
—Jeanne Elium (20th century)
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)