Group Object - Examples

Examples

  • A group can be viewed as a group object in the category of sets. The map m is the group operation, the map e (whose domain is a singleton) picks out the identity element of the group, and the map inv assigns to every group element its inverse. eG : GG is the map that sends every element of G to the identity element.
  • A topological group is a group object in the category of topological spaces with continuous functions.
  • A Lie group is a group object in the category of smooth manifolds with smooth maps.
  • A Lie supergroup is a group object in the category of supermanifolds.
  • An algebraic group is a group object in the category of algebraic varieties. In modern algebraic geometry, one considers the more general group schemes, group objects in the category of schemes.
  • A localic group is a group object in the category of locales.
  • The group objects in the category of groups (or monoids) are the Abelian groups. The reason for this is that, if inv is assumed to be a homomorphism, then G must be abelian. More precisely: if A is an abelian group and we denote by m the group multiplication of A, by e the inclusion of the identity element, and by inv the inversion operation on A, then (A,m,e,inv) is a group object in the category of groups (or monoids). Conversely, if (A,m,e,inv) is a group object in one of those categories, then m necessarily coincides with the given operation on A, e is the inclusion of the given identity element on A, inv is the inversion operation and A with the given operation is an abelian group. See also Eckmann-Hilton argument.
  • Given a category C with finite coproducts, a cogroup object is an object G of C together with a "comultiplication" m: GG G, a "coidentity" e: G → 0, and a "coinversion" inv: GG, which satisfy the dual versions of the axioms for group objects. Here 0 is the initial object of C. Cogroup objects occur naturally in algebraic topology.

Read more about this topic:  Group Object

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)