Definition
Formally, we start with a category C with finite products (i.e. C has a terminal object 1 and any two objects of C have a product). A group object in C is an object G of C together with morphisms
- m : G × G → G (thought of as the "group multiplication")
- e : 1 → G (thought of as the "inclusion of the identity element")
- inv: G → G (thought of as the "inversion operation")
such that the following properties (modeled on the group axioms – more precisely, on the definition of a group used in universal algebra) are satisfied
- m is associative, i.e. m(m × idG) = m (idG × m) as morphisms G × G × G → G; here we identify G × (G × G) in a canonical manner with (G × G) × G.
- e is a two-sided unit of m, i.e. m (idG × e) = p1, where p1 : G × 1 → G is the canonical projection, and m (e × idG) = p2, where p2 : 1 × G → G is the canonical projection
- inv is a two-sided inverse for m, i.e. if d : G → G × G is the diagonal map, and eG : G → G is the composition of the unique morphism G → 1 (also called the counit) with e, then m (idG × inv) d = eG and m (inv × idG) d = eG.
Note that this is stated in terms of maps – product and inverse must be maps in the category – and without any reference to underlying "elements" of group – categories in general do not have elements to their objects.
Another way to state the above is to say G is a group object in a category C if for every object X in C, there is a group structure on the morphisms hom(X, G) from X to G such that the association of X to hom(X, G) is a (contravariant) functor from C to the category of groups.
Read more about this topic: Group Object
Famous quotes containing the word definition:
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)