Group Object - Definition

Definition

Formally, we start with a category C with finite products (i.e. C has a terminal object 1 and any two objects of C have a product). A group object in C is an object G of C together with morphisms

  • m : G × GG (thought of as the "group multiplication")
  • e : 1 → G (thought of as the "inclusion of the identity element")
  • inv: GG (thought of as the "inversion operation")

such that the following properties (modeled on the group axioms – more precisely, on the definition of a group used in universal algebra) are satisfied

  • m is associative, i.e. m(m × idG) = m (idG × m) as morphisms G × G × GG; here we identify G × (G × G) in a canonical manner with (G × G) × G.
  • e is a two-sided unit of m, i.e. m (idG × e) = p1, where p1 : G × 1 → G is the canonical projection, and m (e × idG) = p2, where p2 : 1 × GG is the canonical projection
  • inv is a two-sided inverse for m, i.e. if d : GG × G is the diagonal map, and eG : GG is the composition of the unique morphism G → 1 (also called the counit) with e, then m (idG × inv) d = eG and m (inv × idG) d = eG.

Note that this is stated in terms of maps – product and inverse must be maps in the category – and without any reference to underlying "elements" of group – categories in general do not have elements to their objects.

Another way to state the above is to say G is a group object in a category C if for every object X in C, there is a group structure on the morphisms hom(X, G) from X to G such that the association of X to hom(X, G) is a (contravariant) functor from C to the category of groups.

Read more about this topic:  Group Object

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)