Group Object - Definition

Definition

Formally, we start with a category C with finite products (i.e. C has a terminal object 1 and any two objects of C have a product). A group object in C is an object G of C together with morphisms

  • m : G × GG (thought of as the "group multiplication")
  • e : 1 → G (thought of as the "inclusion of the identity element")
  • inv: GG (thought of as the "inversion operation")

such that the following properties (modeled on the group axioms – more precisely, on the definition of a group used in universal algebra) are satisfied

  • m is associative, i.e. m(m × idG) = m (idG × m) as morphisms G × G × GG; here we identify G × (G × G) in a canonical manner with (G × G) × G.
  • e is a two-sided unit of m, i.e. m (idG × e) = p1, where p1 : G × 1 → G is the canonical projection, and m (e × idG) = p2, where p2 : 1 × GG is the canonical projection
  • inv is a two-sided inverse for m, i.e. if d : GG × G is the diagonal map, and eG : GG is the composition of the unique morphism G → 1 (also called the counit) with e, then m (idG × inv) d = eG and m (inv × idG) d = eG.

Note that this is stated in terms of maps – product and inverse must be maps in the category – and without any reference to underlying "elements" of group – categories in general do not have elements to their objects.

Another way to state the above is to say G is a group object in a category C if for every object X in C, there is a group structure on the morphisms hom(X, G) from X to G such that the association of X to hom(X, G) is a (contravariant) functor from C to the category of groups.

Read more about this topic:  Group Object

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)