Group (mathematics) - Finite Groups

Finite Groups

Main article: Finite group

A group is called finite if it has a finite number of elements. The number of elements is called the order of the group. An important class is the symmetric groups SN, the groups of permutations of N letters. For example, the symmetric group on 3 letters S3 is the group consisting of all possible orderings of the three letters ABC, i.e. contains the elements ABC, ACB, ..., up to CBA, in total 6 (or 3 factorial) elements. This class is fundamental insofar as any finite group can be expressed as a subgroup of a symmetric group SN for a suitable integer N (Cayley's theorem). Parallel to the group of symmetries of the square above, S3 can also be interpreted as the group of symmetries of an equilateral triangle.

The order of an element a in a group G is the least positive integer n such that a n = e, where a n represents

i.e. application of the operation • to n copies of a. (If • represents multiplication, then an corresponds to the nth power of a.) In infinite groups, such an n may not exist, in which case the order of a is said to be infinity. The order of an element equals the order of the cyclic subgroup generated by this element.

More sophisticated counting techniques, for example counting cosets, yield more precise statements about finite groups: Lagrange's Theorem states that for a finite group G the order of any finite subgroup H divides the order of G. The Sylow theorems give a partial converse.

The dihedral group (discussed above) is a finite group of order 8. The order of r1 is 4, as is the order of the subgroup R it generates (see above). The order of the reflection elements fv etc. is 2. Both orders divide 8, as predicted by Lagrange's Theorem. The groups Fp× above have order p − 1.

Read more about this topic:  Group (mathematics)

Famous quotes containing the words finite and/or groups:

    We know then the existence and nature of the finite, because we also are finite and have extension. We know the existence of the infinite and are ignorant of its nature, because it has extension like us, but not limits like us. But we know neither the existence nor the nature of God, because he has neither extension nor limits.
    Blaise Pascal (1623–1662)

    In properly organized groups no faith is required; what is required is simply a little trust and even that only for a little while, for the sooner a man begins to verify all he hears the better it is for him.
    George Gurdjieff (c. 1877–1949)